One of the central questions in Hopf algebra theory is to classify finite-dimensional ones. The research in this direction is very rich. Most of the classification results consist of Hopf algebras that are basic or have the dual Chevalley property (that is, its coradical is a subalgebra) . But there are very few results on finite-dimensional Hopf algebras without the dual Chevalley property in the literature, which is a very difficult problem in the classification. We propose, by means of the generalized lifting method, to study the construction and classification of finite-dimensional Hopf algebras without the dual Chevalley property. It will involve the representation of non-semisimple Hopf algebras, the classification of (non-diagonal) Nichols algebras, and the deformation of their bosonization.
有限维Hopf代数的分类是Hopf代数结构理论研究中的一个中心课题,研究成果非常丰富。已有的分类结果几乎都是由具有对偶Chevalley性质(即余根基是子代数)的或基本的Hopf代数构成的。而不具有对偶Chevalley性质的有限维Hopf代数的分类是一个困难的问题,相关的研究还很少。本项目拟应用广义提升范式的思想,研究不具有对偶Chevalley性质的有限维Hopf代数的构造和分类问题。 研究过程将涉及到非半单Hopf代数的表示、(非对角型)Nichols代数的分类以及它们的玻色化的形变等问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
“阶跃式”滑坡突变预测与核心因子提取的平衡集成树模型
WMTL-代数中的蕴涵滤子及其应用
政策工具影响耕地保护效果的区域异质性——基于中国省际面板数据的实证研究
In 掺杂h-LuFeO_3光吸收及极化性能的第一性原理计算
平面并联机构正运动学分析的几何建模和免消元计算
不具有对偶Chevalley性质的有限维Hopf代数的分类问题
GK-维数有限的Hopf代数的分类
Hopf代数的分类、本原上同调及相关问题
Hopf 代数的分类及其应用