A new unit operation in chemical engineering, i.e. adsorptive absorption is proposed in this project. As we know, selection of a suitable separating agent is the key technology of special distillation processes. We decide to use the mixture of solvent (e.g. organic solvents or ionic liquids) and MOFs (metal-organic frameworks) as an alternative of the single methanol which has been applied for gas separation at low temperatures in industry, making full use of the advantages of fine MOFs particles. The whole separation process will be intensified in the angle of thermodynamics and dynamics. The project tries to identify the influence of molecular structures of solvents, the microscopic structures of MOFs and their composition in the mixed separating agent on separation performance. We also decide to establish the predictive thermodynamic models which are suitable for the systems investigated. The CFD (Computation Fluid Dynamics) model will be established to describe the gas-liquid-solid three phases flow on the flow-guided sieve tray. The structural parameters of flow-guided sieve tray can be optimized. Meanwhile, at the column scale, equilibrium stage model, nonequilibrium stage model, and the combination of equilibrium stage and Murphree tray efficiency are established, in which some modelling parameters come from the CFD model as well as predictive thermodynamic model. The predicted values by these three mathematical models must be compared with the experimental data, confirming their reliability. On this basis, the sensitivity analysis will be done. In this project, we expect to construct the chemical engineering foundation for adsorptive absorption from the scientific viewpoint.
提出了一种新型的化工单元操作-吸附/吸收耦合技术。众所周知,选取适宜的分离剂是特殊分离过程的关键技术。本课题拟以溶剂(包括有机溶剂和离子液体)+MOFs材料所组成的混合分离剂替代工业上单一的挥发性溶剂,以期充分发挥出MOFs细颗粒材料的优点,从热力学和动力学两方面强化某些气体分离过程(合成气甲醇洗脱碳)。研究溶剂的分子结构、MOFs材料的微观结构以及它们之间的混合配比对分离性能的影响规律,建立适合模型分离物系的预测型热力学模型。同时,建立与吸附/吸收耦合操作相匹配的高效导向筛板的气液固三相CFD数学模型,优化高效导向筛板结构参数,并连同预测型热力学模型一起为全塔尺度的平衡级模型、非平衡级模型和平衡级+Murphree板效率模型输入必要的模型参数。将数学模型的计算值与冷模和热态实验结果对比,验证数学模型的准确性,并作必要的参变性能分析,期望从科学层面构建吸附/吸收耦合单元操作的化学工程基础。
提出了一种新型的化工单元操作-吸附/吸收耦合技术。众所周知,选取适宜的分离剂是特殊分离过程的关键技术。本课题以溶剂(包括有机溶剂和离子液体) + MOFs 材料所组成的混合分离剂替代工业上单一的挥发性溶剂,以期充分发挥出MOFs细颗粒材料的优点,从热力学和动力学两方面强化某些气体分离过程(合成气甲醇洗脱碳)。本项目研究了溶剂的分子结构、MOFs材料的微观结构以及它们之间的混合配比对分离性能的影响规律,建立了适合模型分离物系的预测型热力学模型。同时,建立与吸附/吸收耦合操作相匹配的高效导向筛板的气液固三相CFD数学模型,优化高效导向筛板结构参数,并连同预测型热力学模型一起为全塔尺度的平衡级模型、非平衡级模型和平衡级 + Murphree 板效率模型输入必要的模型参数。数学模型的计算值与冷模和热态实验结果对比,验证了数学模型的准确性,并作必要的参变性能分析,期望从科学层面构建吸附/吸收耦合单元操作的化学工程基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于LASSO-SVMR模型城市生活需水量的预测
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于二维材料的自旋-轨道矩研究进展
中孔-微孔吸附树脂耦合吸附汽油油气新技术的应用基础研究
钒钛磁铁矿钛资源高效利用化学工程基础研究
吸收-吸附耦合法捕集烃类气体过程传质机理及动力学研究
面向盐湖镁锂分离的吸附-膜分离耦合技术基础研究