Gas drying is an important unit operation in the field of chemical engineering, and the selection of suitable separating agents is its key technology. But the conventional polar organic separating agents used in industry are of the disadvantages of large equipment volume, high energy consumption, and having solvent loss. Accordingly, a new gas drying technology with ionic liquids (ILs) has been proposed in this project, making full use of the advantages of ILs as green and high-efficiency separating agents in separations, i.e., simpler operation, lower energy consumption, and no theoretical solvent loss when compared to the conventional volatile solvents. In principle, this new technology is easy to be implemented in industry with small equipment volume. Aiming to the objective systems, this project tries to identify the influence of molecular structures of ILs on separation performance. We also decide to establish the predictive molecular thermodynamic models which are suitable for the systems investigated to screen out the suitable IL. Moreover, the CFD (Computation Fluid Dynamics) model will be established to describe the gas-liquid two phases flow on the high-efficiency BH structured packings. The structural parameters of BH structured packings will be optimized. Meanwhile, at the column scale, the rigorous equilibrium (EQ) stage model is established, in which some modeling parameters come from the CFD model as well as the predictive molecular thermodynamic model. The predicted values by this mathematical model should be compared with the experimental data from hot model, thus confirming its reliability. On this basis, the sensitivity analysis will be performed. Through the project, we expect to construct the chemical engineering foundation for gas drying with ILs from the scientific viewpoint. It should be mentioned that the results obtained from this project can be extended to capturing other condensable gases like hydrogen fluoride (HF), volatile organic compounds (VOCs), or removing VOCs and water together from gas mixtures normally encountered in chemical engineering.
气体干燥是化学工程领域一种重要的单元操作,而选取适宜的分离剂是其关键技术。目前工业上常用的极性有机溶剂具有生产装置体积大、能耗高和溶剂损失等缺点。鉴于此,本项目提出了离子液体气体干燥新技术,充分发挥出离子液体绿色高效的分离性能- 操作简单、能耗低、理论上无分离剂损失,且装置体积小、易于工业实施。针对目标体系,研究离子液体分子结构对分离性能的影响规律,并建立适用于该体系的实用的预测型分子热力学模型,筛选出合适的离子液体分离剂。建立与离子液体气体干燥单元操作相匹配的BH高效填料内的气液两相流CFD数学模型,优化填料结构参数,并连同预测型热力学模型一起为全塔尺度的平衡级模型输入必要参数。将数学模型计算值与热态实验结果对比,验证数学模型准确性,并作必要的参变性能分析,期望构建离子液体气体干燥新技术的化学工程基础。研究成果也可推广到从气体混合物中脱除可凝性HF、挥发性有机物(脱油)或同时脱水、脱油。
气体干燥是化学工程领域一种重要的单元操作,而选取适宜的分离剂是其关键技术。目前工业上常用的极性有机溶剂具有生产装置体积大、能耗高和溶剂损失等缺点。鉴于此,本项目提出了离子液体气体干燥新技术,充分发挥出离子液体绿色高效的分离性能- 操作简单、能耗低、理论上无分离剂损失,且装置体积小、易于工业实施。针对目标体系,研究离子液体分子结构对分离性能的影响规律,并建立适用于该体系的实用的预测型分子热力学模型,筛选出合适的离子液体分离剂。结合UNIFAC模型(预测准确性高)与COSMO-based模型(先验性特征)的优点,提出新的COSMO-UNIFAC组合预测型分子热力学模型。该模型已嵌入到7家国内外著名商用软件之中。建立与离子液体气体干燥单元操作相匹配的BH高效填料内的气液两相流CFD数学模型,优化填料结构参数,并连同预测型热力学模型一起为全塔尺度的平衡级模型输入必要参数。将数学模型计算值与热态实验结果对比,验证了数学模型的准确性,并作必要的参变性能分析。研究成果也可推广到从气体混合物中脱除可凝性HF、挥发性有机物(脱油)或同时脱水、脱油。项目执行期间项目负责人发表学术论文24篇(SCI收录)和1篇中文核心期刊(《化工学报》),包括本领域三大Top期刊 AIChE J. 2篇, Chem. Eng. Sci. 5篇、Ind. Eng. Chem. Res. 5篇等(均已标识资助号)。出版了3部英文专著和2部中文专著,授权国家发明专利3件。此外,项目负责人还担任国际期刊Green Energy Environ. (IF 8.207; Elsevier B.V. 出版社) 的Guest Editor,主持具有明确目标导向性的“COSMO-based Models”预测型分子热力学主题特刊。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
低轨卫星通信信道分配策略
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
离子液体萃取精馏的科学技术与基础
仿生型离子液体捕集温室气体CO2的基础研究
离子液体低温吸收合成气中二氧化碳的科学与技术基础
冷冻干燥新技术