Degradation of radioactive organic pollutants wastewater by utilization of solar energy has vital significance in addressing the energy crisis and environmental problems. Among them, developing visible light responsive photocatalysts is the key for efficient sunlight utilization. Although instability is a drawback of metal sulfide photocatalysts the photocorrosion can be suppressed by hole scavenger such as S2- and SO32.. Chalcogenides compounds are attractive materials as candidates of visible-light-driven photocatalysts. The aim of this project is to explore the synthesis and visible-light- responsive properties of various chalcogenides compounds (e.g. metal-doped chalcogenides nanostructures, porous chalcogenides chalcogels and microporous zeolite-type chalcogenides), and further study photocatalytic efficiency in degradation of radioactive organic pollutants solution under visible-light irradiation. Structure and properties manipulation of chalcogenides semiconductor nanostructures will be investigated in order to realize effective tailoring the properties of visible-light-driven photocatalysts, which would provide a general synthesis routes for design and prepare other family of metal sulfide-based semiconductor materials. Different synthesis and design strategies will be used in fabrication of visible-light-driven chalcogenides, including surface modification with metal nanoclusters or two dimensional metal sulfide nanosheets and different metal-doped ratio. We will focus on disclosing the correlation among nuclide ( 90Sr, 137Cs) and alpha/beta/gamma ray on photogenerated charge transfer on the chalcogenides surface, and products of strong oxidizing free radicals as well as organic matter induced cracking. Moreover, we will investigate the mechanism of degradation of different organic matter in radioactive liquid waste under visible-light irradiation. This project would provide both theoretic and experimental supports for the large scale fabrication of novel chalcogenides materials, and even be feasible to extend the potential applications of visible-light-driven chalcogenides semiconductor in the field of other industrial wastewater treatment.
降解放射性有机污染物废水对解决能源和环境问题具有重要意义,而可见光响应催化剂的研制是实现太阳光高效利用的关键。硫属化合物一直是可见光响应催化性能优越的光催化剂备选材料。本研究旨在探索不同类型的硫属化合物(包括金属掺杂硫属、多孔硫属化合物凝胶及微孔沸石型硫属化合物)的合成及可见光响应的性质,并研究在可见光下光催化降解放射性有机物废液/废水的效率。本项目将对硫属化合物半导体材料进行结构和性能调控,进行表面修饰、离子掺杂等手段实现,为合成和制备其它可见光相应的电子能带结构可调的光催化剂提供借鉴依据,揭示核素、阿尔法、贝塔和伽马射线射线对硫属化合物半导体光生电荷转移、强氧化自由基生成以及对有机物诱发裂解机制的影响规律,阐明可见光作用放射性废液中不同有机物催化降解机理。为该类半导体材料将来其它工业废水处理应用提供重要依据。
降解放射性有机污染物废水对解决能源和环境问题具有重要意义,而可见光响应催化剂的研制是实现太阳光高效利用的关键。硫属化合物一直是可见光响应催化性能优越的光催化剂备选材料。本研究旨在探索不同类型的硫属化合物的合成及可见光响应的性质,并研究在可见光下光催化降解模拟放射性有机物废液/废水的效率。本项目将对硫属化合物半导体材料进行结构和性能调控,进行表面修饰、离子掺杂等手段实现,为合成和制备其它可见光相应的电子能带结构可调的光催化剂提供借鉴依据,阐明可见光作用模拟放射性废液中不同有机物催化降解机理。为该类半导体材料将来其它工业废水处理应用提供重要依据。在项目执行期间共发表学术论文14篇。项目负责人在2018年获得四川省学术与技术带头人后备人选称号。在人才培养方面指导7名硕士毕业,目前在读博士生1人,硕士生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
气载放射性碘采样测量方法研究进展
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
响应面法优化藤茶总黄酮的提取工艺
铁酸锌的制备及光催化作用研究现状
聚酰胺酸盐薄膜的亚胺化历程研究
可见光响应型MOF光催化晶态材料的设计、制备及其降解有机污染物研究
可见光响应型多酸基金属-有机骨架的设计合成及其光催化降解有机污染物的研究
半导体诱发的可见光-Fenton体系降解有机污染物研究
可见光响应的多核钨簇基分子催化体系的构筑及其光降解有机污染物研究