Fusarium Head Blight (FHB) of cereals caused by Fusarium graminearum is one of the most destructive fungal diseases worldwide. Despite the ineffectiveness of some azole fungicides against F. graminearum, these fungicides are currently the most widely used treatment for plant protection. CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. The effect of the azole fungicides to the fungus is significantly reduced for the mutations on the CYP51. However, the structural basis about molecular mechanism of resistance to the azole fungicides of CYP51 from F. graminearum is still unknown. On the basis of previous studies, we will solve the structures of CYP51 proteins of F. graminearum and its mutant by protein crystallography and biophysics and so on. The binding affinity of FgCYP51A and FgCYP51B with the azole fungicides will be analyzed respectively, and the crystal structures of the proteins and its complex will be elucidated, which establish an important basis to further understand the molecular bases of the molecular mechanism of resistance to the azole fungicides and their diverse biology functions. One of the novel approaches to development of environmentally friendly and highly efficient fungicides is to design and screen chemicals that specifically target pathogen-unique protein.
禾谷镰刀菌是引起小麦赤霉病的主要病原菌。唑类杀菌剂是目前用于防治该病害的主要杀菌剂,其靶标为细胞色素P450甾醇14α脱甲基酶(CYP51)。CYP51氨基酸的突变会使得病原真菌产生严重抗药性,致使杀菌剂防效显著下降。但是,禾谷镰刀菌CYP51蛋白与唑类杀菌剂互作分子机制的结构基础并不清楚。本研究拟采用蛋白质晶体学、生物物理学和分子遗传学等技术开展禾谷镰刀菌CYP51及其突变型的蛋白晶体结构和生物学功能研究,内容包括:CYP51与唑类杀菌剂结合功能分析,CYP51及其与唑类杀菌剂复合物的晶体结构解析。该研究将会为深入地阐释禾谷镰刀菌CYP51对唑类杀菌剂产生抗药性的分子机制以及该家族蛋白不同的生物学功能奠定结构基础,同时也会为开展基于病菌特异靶标蛋白的新型环保高效杀菌剂的设计奠定结构基础,进而对新型药物设计具有重要意义。
禾谷镰刀菌是引起小麦赤霉病的主要病原菌。唑类杀菌剂是目前用于防治该病害的主要杀菌剂,其靶标为细胞色素P450甾醇14α脱甲基酶(CYP51)。CYP51氨基酸的突变是病原真菌产生抗药性机制之一,致使杀菌剂防效显著下降。但是,禾谷镰刀菌CYP51蛋白与唑类杀菌剂互作分子机制的结构基础并不清楚。本研究拟采用分子遗传学等技术开展禾谷镰刀菌CYP51及其突变型的蛋白结构和生物学功能研究。具体内容包括:1.获得了FgCYP51A,FgCYP51B,FgCYP51C三个基因全长cDNA,并分别构建了pHAT2、pETM-20和pETM-30原核表达载体。FgCYP51B、FgCYP51A、FgCYP51C的全长表达载体在BL21(DE3)、Rosetta(DE3)表达菌株中表达量不同,主要是以包涵体的形式存在。构建了去除N端49AA的截短FgCYP51B表达载体,pETM-20-CYP51B目标蛋白主要是以包涵体的形式存在。pETM-30-CYP51B表达载体目标蛋白可溶,但是蛋白不稳定。构建了去除N端34AA的截短表达载体,融合蛋白均以包涵体的形式存在。2.以AfCYP51B蛋白晶体结构为模板对FgCYP51B、FgCYP51A蛋白进行了同源建模,蛋白结构与三唑类戊唑醇等五种杀菌剂进行了分子对接,发现FgCYP51B蛋白Phe511,Val136,le374,Ala308,Ser312,Try137,Tyr123等重要氨基酸组成药剂结合口袋。利用基因定点突变技术构建FgCYP51B蛋白的四个突变体包括Y123H、V136A、Y137H、F511L。其中,Y123H对咪鲜胺产生抗药性;Y137H对戊唑醇产生抗药性;V136A对烯唑醇产生抗性;而F511L对烯唑醇变得敏感。利用分子对接方法解释了四个突变体与药剂分子互作亲和力、自由能的变化导致生测表型变化的分子机理。另外,四个突变体分生孢子、子囊孢子等生物学表型也发生变化。3.基于FgCYP51B蛋白三维结构筛选了4个小分子化合物并进行了植物病原菌的生测研究,发现4个小分子化合物对禾谷镰刀菌等植物病原菌抑菌效果好,甚至优于苯并咪唑类、三唑类杀菌剂效果。该研究将会为深入地阐释禾谷镰刀菌CYP51对唑类杀菌剂产生抗药性的分子机制,同时也会为开展基于病菌特异靶标蛋白的新型环保高效杀菌剂的设计奠定结构基础,进而对新型药物设计具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
视网膜母细胞瘤的治疗研究进展
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
禾谷镰刀菌SR蛋白调控有性生殖和致病性的分子机制
Rab家族小G蛋白调控禾谷镰刀菌DON毒素合成与分泌的分子机制
小麦ALP蛋白通过与FgSUN1互作抑制禾谷镰刀菌生长的分子机制
禾谷镰刀菌对氰烯菌酯药敏性调控机制研究