进化算法(EA)理论与应用研究

基本信息
批准号:69974026
项目类别:面上项目
资助金额:12.00
负责人:寇纪淞
学科分类:
依托单位:天津大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:林丹,马丰宁,王以直,戴晓晖,陈富赞,赵秀云,李建武,王君圣
关键词:
数据开采进化算法优化
结项摘要

Evolutionary algorithms (EA) includes four concrete styles such as genetic algorithms (GA), evolution strategies (ES), evolutionary programming (EP), and genetic programming (GP). They are all formulated based the evolution theory and genetics in biology. EA is mainly applied as a robust stochastic heuristic method in solving sophisticated optimization problems or in searching complex spaces, and is empowered with the population based searching and simple genetic operators. It is fitted to the simultaneously searching of multi-parts of the solution space, and also to be implemented on large parallel computer platforms. In the research process of this project, we firstly analyze the schema theory and evolutionary dynamics of genetic agorithms based on binary encoding, and concepts as schemata deceptiveness and GA deception problems are defined exactly. The affection of schema deceptiveness on GA searching behavior is discussed in detail. Then, we present the convergence proof of GA based on real number encoding, which is beneficial to the application of floating GA to practical optimization problems, and further the design of adaptive mutation operators. Meanwhile, this proof and derived conclusions also conform to evolutionary programming and evolution strategies. We also give a new proof for the no free lunch theory, which reveals more explicitly its essence and can provide genuine information to algorithms design and applications of EA to real-world problems.Thirdly, we take the GA as a high-dimension, non-linear, stochastic, discrete and dynamic system, and build up the performance analysis matrix. Different parameterized GAs are tested by calculating probability density function of all individuals. This approach is feasible to aid to find a good algorithm for a given problem. Fourthly, we study the design of genetic strategies with the view of increasing the global searching power of EA. A new non-monotone fitness scaling method in GA is proposed to deal with the schema deceptiveness existed in complex optimization problems. We analyze the behavior of genetic algorithms in solving multimodal function optimization, and formulate the logic of macro-niching method based on multi-populations, and described its mechanism and work flow in detail. We also designed a new approach for calculating niche radius automatically. Fifthly, As to the constrained optimization problems, a new method called direct comparison- proportional method (DCPM) is proposed, which combines tournament selection in GA and the reservation of a fixed percentage of infeasible individuals.Based on the analysis of multi-objective EA, we introduce a new algorithm (ScGA) for solving multi-modal problems which is more effective and accurate. Three new multi-objective algorithms are proposed by using fuzzy preference, sorting and totally weighted sum approaches in selection operations individually. .Finally, EA is applied to optimization problems in knowledge acquisition and data mining. We design concrete styles of GA in concept learning and the construction of Bayes belief network. A new dynamic clustering method based on genetic algorithms is presented for the data analysis in databases. We proposes a supervised training-test method with genetic programming for pattern classification. Compared with conventional methods with regard to deterministic pattern classifiers, this method is applicable to both linear separable problems and linearly non-separable problems. For specific training samples, it can formulate the expression of discriminate function well without any prior knowledge. For the proposed methods and algorithms above, various problems and functions are used to test their feasibility and effectiveness. Experiments are conducted systematically, and results reveal that they are practical, efficient and robust.

本课题的研究主要集中于:进化算法的理论研究以及它在机器学习、模式识别及数据开采等领域中的应用。我们希望通过研究,能够建立一个比较完整和实用的关于进化算法的理论体系,以此来指导分析已有的并且设计新的、高效的、应用于特定问题的遗传操作与算子,生成新的算法,编制成供实际使用的软件包,以解决有重要应用意义和价值的优化、数据开采、模式识别等领域中的实际问题。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于铁路客流分配的旅客列车开行方案调整方法

基于铁路客流分配的旅客列车开行方案调整方法

DOI:
发表时间:2021
2

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
3

新型树启发式搜索算法的机器人路径规划

新型树启发式搜索算法的机器人路径规划

DOI:10.3778/j.issn.1002-8331.1903-0411
发表时间:2020
4

"多对多"模式下GEO卫星在轨加注任务规划

"多对多"模式下GEO卫星在轨加注任务规划

DOI:10.19328/j.cnki.2096-8655.2022.02.002
发表时间:2022
5

智能煤矿建设路线与工程实践

智能煤矿建设路线与工程实践

DOI:10.13199/j.cnki.cst.2020.07.010
发表时间:2020

寇纪淞的其他基金

批准号:71240022
批准年份:2012
资助金额:15.00
项目类别:专项基金项目
批准号:61074152
批准年份:2010
资助金额:35.00
项目类别:面上项目
批准号:70771074
批准年份:2007
资助金额:20.00
项目类别:面上项目
批准号:71024801
批准年份:2010
资助金额:24.00
项目类别:专项基金项目
批准号:70824801
批准年份:2008
资助金额:20.00
项目类别:专项基金项目
批准号:70840019
批准年份:2008
资助金额:6.00
项目类别:专项基金项目
批准号:70371046
批准年份:2003
资助金额:14.00
项目类别:面上项目
批准号:70624801
批准年份:2006
资助金额:20.00
项目类别:专项基金项目
批准号:70940019
批准年份:2009
资助金额:6.00
项目类别:专项基金项目
批准号:69574022
批准年份:1995
资助金额:8.00
项目类别:面上项目

相似国自然基金

1

多目标进化算法的理论与应用研究

批准号:70301005
批准年份:2003
负责人:林丹
学科分类:G0103
资助金额:15.00
项目类别:青年科学基金项目
2

进化型硬件理论与应用研究

批准号:60404004
批准年份:2004
负责人:罗文坚
学科分类:F0301
资助金额:25.00
项目类别:青年科学基金项目
3

免疫克隆进化算法及其应用研究

批准号:60372045
批准年份:2003
负责人:刘芳
学科分类:F0113
资助金额:22.00
项目类别:面上项目
4

类进化计算研究:基于可达特性分析的类进化算法理论与应用

批准号:61203311
批准年份:2012
负责人:陈皓
学科分类:F0305
资助金额:26.00
项目类别:青年科学基金项目