两类随机过程的局部渐近理论及在保险中的应用

基本信息
批准号:11071182
项目类别:面上项目
资助金额:26.00
负责人:王岳宝
学科分类:
依托单位:苏州大学
批准年份:2010
结题年份:2013
起止时间:2011-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:成凤旸,严继高,程东亚,王开永,谭中权,董英华,崔召磊,高庆武,于长俊
关键词:
局部渐近理论Levy过程局部破产概率随机游动
结项摘要

本项目主要研究带重尾增量的随机游动和带重尾谱测度的Levy过程的局部(含非局部)渐近理论,包括两类过程自身,它们的超出,不足和上确界的尾的分布和矩的局部渐近性等.为此,本项目还将研究相关的重尾分布理论,更新理论,极限理论和极值理论问题,如随机和的复合分布的上下极限等历史遗留问题,一些相依过程的更新定理及r-次收敛性问题等..在上述理论研究的基础上,本项目将研究带重尾索赔的更新风险模型和Levy风险模型两类主要的保险风险模型的有限时局部破产概率的渐近估计,以及Levy 风险模型的无限时局部破产概率的渐近估计(更新风险模型的相应问题已被前一已结题项目10671139解决)等..应该说,局部破产概率的渐近估计比非局部破产概率的有更大的现实意义,但是在国内外的研究中,它和Levy过程的局部渐近理论却都处在刚刚兴起的状态,这正是本项目的动机和兴趣所在.

项目摘要

本项目主要研究了带重尾增量的随机游动和带重尾谱测度的Levy过程的局部(含全局)渐近理论,包括两类过程自身,超出,不足及上确界的分布及矩的局部(含全局)渐近性,等等。为此,本项目深入研究了相关的重尾分布理论,随机变量的一些新的相依结构,一些相依随机变量的更新理论,极限理论及极值理论,等等。在上述两方面研究的基础上,本项目获得了带重尾索赔的更新风险模型及Levy风险模型的有限时局部破产概率的渐近估计,Levy风险模型的无限时局部破产概率的渐近估计。本项目的研究对象之间大多具有某种相依结构,并且各自带有重尾分布,形成本项目的两大特色。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

DOI:10.13334/j.0258-8013.pcsee.190276
发表时间:2020
2

基于旋量理论的数控机床几何误差分离与补偿方法研究

基于旋量理论的数控机床几何误差分离与补偿方法研究

DOI:
发表时间:2019
3

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018
4

现代优化理论与应用

现代优化理论与应用

DOI:10.1360/SSM-2020-0035
发表时间:2020
5

多元化企业IT协同的维度及测量

多元化企业IT协同的维度及测量

DOI:
发表时间:2017

王岳宝的其他基金

批准号:10271087
批准年份:2002
资助金额:13.00
项目类别:面上项目
批准号:10671139
批准年份:2006
资助金额:18.00
项目类别:面上项目

相似国自然基金

1

随机增长过程的渐近分布理论及其应用

批准号:11871425
批准年份:2018
负责人:苏中根
学科分类:A0211
资助金额:52.00
项目类别:面上项目
2

随机游动的渐近理论及其在风险理论中的应用

批准号:11226211
批准年份:2012
负责人:王开永
学科分类:A0211
资助金额:3.00
项目类别:数学天元基金项目
3

保险中两类随机最优控制问题及策略过程概率分布研究

批准号:11471183
批准年份:2014
负责人:梁宗霞
学科分类:A0210
资助金额:58.00
项目类别:面上项目
4

随机度量理论及其在随机过程的动态风险中的应用

批准号:11171015
批准年份:2011
负责人:郭铁信
学科分类:A0208
资助金额:43.00
项目类别:面上项目