High-speed optical transceiver has become the hotspot in the development of optical communication network, due to the rising of big data, cloud computing, 5G, Internet of things, artificial intelligence and other applications. As one of the core optical chips in optical transceiver, the role of semiconductor photodetector is particularly critical. This project aims to develop a silicon-based germanium detector with high speed, high responsivity and wide spectral response. A silicon-based germanium detector based on resonant metasurface is proposed to enhance the responsivity of the detector through resonance of incident light in the metasurface. At the same time, with flexible design of the metasurface, multiple resonant modes are overlapped together to broaden the spectral response range of the detector. The project will revolve around the physical mechanism of the metasurface resonance enhancing light absorption, implementation method, high quality epitaxial growth, detector fabrication, to carry out research and break through the trade-off between bandwidth and responsivity in traditional vertical incidence silicon germanium detectors. Furthermore, wide spectral response range can be achieved by metasurface optical design to meet the needs of wavelength division multiplexing. The fabricated detector will go through the small signal bandwidth, eye diagram and bit error rate testing and characterization. The metasurface silicon-based germanium detector proposed in this project solves traditional problems in an innovative way, which is expected to promote the independent research and development of high-speed optical chips in China and the development of optical interconnection in data centers.
随着大数据、云计算、5G、物联网以及人工智能等应用的快速崛起,高速光模块已成为光通信网络的发展热点。作为光模块中的核心光芯片之一,半导体光电探测器的作用尤为关键。本项目以研制高速、高响应度、宽光谱响应硅基锗探测器为目标,提出基于谐振增强型超表面的硅基锗探测器,通过入射光在超表面中的谐振来增强探测器的响应度;同时,利用超表面的灵活设计,将多个谐振模式交叠在一起,拓宽探测器的光谱响应范围。项目将围绕超表面谐振增强光吸收的物理机理、实现方法、高质量外延片的生长、探测器制备等方面开展研究,突破传统垂直入射硅基锗探测器对于带宽和响应度不能兼得的难题,进一步通过超表面光学设计实现宽光谱响应范围以满足多波长复用的需求,并对最终研制出的探测器进行小信号带宽、眼图、误码率等测试和表征。本项目提出的超表面硅基锗探测器以创新的方式来解决传统难题,可望促进国产高速光芯片研发自主化的进程以及数据中心光互联的发展。
随着大数据、云计算、5G、物联网以及人工智能等应用的快速崛起,高速光模块已成为光通信网络的发展热点。作为光模块中的核心光芯片之一,半导体光电探测器的作用尤为关键。本项目以研制高速、高响应度、宽光谱响应硅基锗探测器为目标,设计并制备了基于谐振增强型超表面的硅基锗探测器,通过入射光在超表面中的谐振来增强探测器的响应度;同时,利用超表面的灵活设计,将多个谐振模式交叠在一起,拓宽探测器的光谱响应范围。项目围绕超表面谐振增强光吸收的物理机理、实现方法、高质量外延片的生长、探测器制备等方面开展研究,突破传统垂直入射硅基锗探测器对于带宽和响应度不能兼得的难题,进一步通过超表面光学设计实现宽光谱响应范围以满足多波长复用的需求,并对最终研制出的探测器进行小信号带宽、眼图、误码率等测试和表征,在波长1540nm处实现了高达58%的外量子效率,在在1500 nm~1560 nm波段内实现了300%以上的外量子效率增强,探测器在反向偏压为0 V、3 V和5 V下对应的3 dB带宽分别为18 GHz、33 GHz、33 GHz信号速率加载到56 Gbit/s时眼图仍然较清晰。本项目提出的超表面硅基锗探测器以创新的方式来解决传统难题,可望促进国产高速光芯片研发自主化的进程以及数据中心光互联的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
高功率、大带宽锗硅探测器机理及器件研究
电场调控高响应度超快宽谱石墨烯光电探测器研究
高响应度MgZnO日盲光电探测器研究
高速高效单载流子传输硅基光探测器关键技术研究