In modular representation theory of finite groups, one of the most important tasks is to determine numerical invariants of p-blocks , including the number of irreducible (ordinary /Brauer) characters and the Cartan invariants of p-blocks. In the present project, we will launch our research from the following two aspects: first, with the help of integral quadratic forms, we will estimate the number of irreducible ordinary characters in a p-block B in terms of Cartan invariants of B-subsections, and verify Brauer’s k(B)-Conjecture and Olsson’s Conjecture on this basis; second, we will investigate the properties of lower defect group multiplicities and subpair multiplicities associated to a p-block B, and use these tools to determine k(B), l(B) and the elementary divisors of the Cartan matrix of B.
在有限群的模表示论中,最重要的研究课题之一是计算p-块的各种数值不变量,其中包括p-块中不可约(常/Brauer)特征标的个数以及p-块的Cartan不变量。本项目拟从以下两个方面展开研究:其一,以整系数二次型为工具,通过分析有限群的p-块的子部的Cartan矩阵,估计p-块中不可约常特征标的个数,并在此基础上验证Brauer的k(B)-猜想和Olsson猜想;其二,探讨下亏群重数和子对重数的性质,并以它们为工具计算p-块中不可约 (常/Brauer)特征标的个数以及Cartan矩阵的初等因子。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
基于全模式全聚焦方法的裂纹超声成像定量检测
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
关于有限p-群的自同构群的研究
有限p-群若干问题及其应用
块不变量,特征标与群结构
有限群块中特征标高的研究