The 21st century is a brilliant century created by optoelectronic technology. The application range of semiconductor light emitting diodes (LEDs) and laser diodes (LDs) cover the entire field of optoelectronics, which have become the core technology of photoelectron science today. In the rapid development process of the semiconductor light source composed by the LEDs and LDs, the ultra-small nanolasers based on one-dimensional nanowires stand out. Miniaturized nanolasers are used in technologies ranging from telecommunications and information storage to medical diagnostics and therapeutics due to their high controllability. .We investigate near-ultraviolet electroluminescence devices based on a single ZnO nanowire. We explore the structure design and preparation technique of the near-ultraviolet electroluminescence devices based on a single n-ZnO nanowire/p-GaN heterostructures, and intend to use transparent flexible graphene electrodes to improve the device performance. .By the photoelectric performance testing and analysis of the devices, we focus on the bonding and control of the n-ZnO nanowires/p-GaN heterojunctions interface to obtain high-quality heterojunctions and optical resonant cavity; we investigate adequate electron and hole injection which the electrically driven laser require to achieve effective UV lasing; we research the device electrical transport property and electro-optical conversion microscopic mechanism to effectively improve the probability of radiative recombination and reduce the lasing threshold, and eventually to achieve lasing of desired excitons gain mechanism. .On the basis of electroluminescence mechanism research, we find decisive factors which affect the light emitting efficiency of the electroluminescence devices, and optimize the preparation process and structure design of the devices, and thereby achieve high-brightness light-emitting of the near-ultraviolet LEDs and room temperature (RT) low threshold lasing of the electrically pumped nanolasers. .The research object of the project cover the ideal one-dimensional (nanowires) and two-dimensional (Graphene) systems, challenge scale limit, build the wonderful bridge across the macroscopic Newtonian world with the microscopic quantum world, and have a wealth of physical connotation. A single ZnO nanowire-based electroluminescence devices prepared on this basis have huge economic and social benefits, and are not only of great practical significance, but also very competitive, walking in the forefront of science.
21世纪是光电子技术创造辉煌的世纪。而半导体发光二极管(LEDs)和激光二极管(LDs)的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。在由LED和LD组成的半导体光源的快速发展中,利用纳米线的一维性制成的超小型纳米激光器更是脱颖而出,它的强可控性使其在生物、医药、电信等领域中有着非常广阔的应用前景。. 本项目旨在研究基于单根ZnO纳米线的电致发光器件。主要探索基于单根n-ZnO纳米线/p-GaN异质结和透明柔韧石墨烯电极的近紫外电致发光器件的微观物理机制。通过光电性能的测试及分析,重点研究n-ZnO纳米线/p-GaN异质结界面的键合与控制;研究电驱动激光所需要的充足的电子和空穴注入问题;研究器件的电光转换的微观机制,以有效降低激射阈值并实现激射所需的激子增益机制。不断优化并最终实现基于单根ZnO纳米线的近紫外LED的高亮度发光和电泵浦纳米激光器的室温低阈值激射。
在半导体光源的快速发展中,利用纳米线的一维性制成的超小型纳米尺度电致发光器件脱颖而出,它的强可控性使其在生物、医药、电信等领域中有着许多激动人心的应用和美好前景。本项目旨在探索基于单根n-ZnO纳米线/p-GaN异质结和透明柔韧石墨烯电极的近紫外电致发光器件的微观物理机制。项目的研究对象涵盖了理想的一维(纳米线)和二维(石墨烯)体系,挑战尺度极限,搭建了跨越宏观牛顿世界与微观量子世界的奇妙桥梁,具有丰富的物理内涵。目前已制备出高质量的基于石墨烯/单根n-ZnO纳米线/p-GaN薄膜垂直结构的纳米尺度的发光二极管,在ZnO纳米线的一端探测到397nm的强紫外发射峰。项目实现了基于单根ZnO纳米线的近紫外LED的高亮度发光,给出了一种发展基于ZnO纳米线的高亮度纳米尺度紫外光源的新路线。已制备出基于Graphene/n-GaN异质结构的紫外-可见双波长光探测器,可应用于高效快速、宽谱响应的光探测。并发展了一种关键技术,包括高质量的石墨烯小片的制备、金属小片电极和PMMA小片绝缘层的制备及其精确定点转移方案,该技术对简化微纳米器件的制备工艺极具现实意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
极地微藻对极端环境的适应机制研究进展
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
表面等离激元增强ZnO基器件紫外电致发光研究
ZnO纳米线近紫外激光发射特性及纳米激光器的研究
ZnO纳米线材料电致紫外激光发射性能与器件研究
新型声表面波型ZnO纳米线紫外探测器件的机理研究