The broad penetration of renewable energy as well as the vigorous development of distributed power system has made energy storage technology be an important component and the key technique in Smart Grid in the future. This issue intended to design a system of multidimensional active composite energy storage system including Compressed Air Energy Storage as well as a theoretical framework and method architecture for this system from scientific point of view with scientific energy utility as guiding ideology. Firstly, establish the hybrid model of Compressed Air Energy Storage on the base of the combination of mechanism and experience. By Studying the Refactoring optimization mechanism as well as revealing hot electrical energy coupling complex multidimensional law within the system, the efficiency of the energy storage system, the capacity utilization and flexibility can be improved. Study the mechanism of its reconstruction and implementation of optimization methods to reveal hot electrical energy coupling complex multidimensional law within the system; improve the efficiency of the energy storage system, the capacity utilization and flexibility. On this basis, search an efficient and reasonable construction for the composite energy storage system including Compressed Air Energy Storage and put forward a corresponding method of capacity configuration. Give full play to the multidimensional characteristic of the composite energy storage system including Compressed Air Energy Storage, put forward an optimal control strategy for active energy storage system to improve the stability as well as the total energy utilization of distributed energy system.At last, design and construct the platform of composite energy storage system including Compressed Air Energy Storage for testing and algorithm verification. As this issue belongs to the control, electrical, thermal and other interdisciplinary frontier, its research results will provide a solid theoretical foundation and technical support for breakthrough of the key bottlenecks in Compressed Air Energy Storage.
可再生能源的广泛渗透和分布式供能系统的蓬勃发展,已使储能技术成为未来智能电网的关键组成部分与核心技术支撑。本项目以科学用能为指导思想,从系统科学角度设计一套含压缩空气的多维主动复合储能系统及其优化控制的基础理论框架和方法体系。首先利用基于机理与经验相结合方法的建立压缩空气储能系统混合模型;通过揭示系统内冷热电多维能量耦合复杂规律研究其重构优化机理与实现方法,全面提高储能系统的效率、容量利用率和灵活性;在此基础上寻求高效合理的含压缩空气的复合储能系统结构方案并提出相应的容量优化配置方法;发挥含压缩空气的复合储能系统的多维能量接口特色,提出可改善分布式供能系统稳定性与总能利用率的主动储能优化控制策略;最后设计并搭建含压缩空气的复合储能系统试验平台验证算法的有效性。本课题属控制、电气、热工等多学科交叉的前沿方向,研究成果将为突破制约压缩空气储能发展的关键瓶颈提供坚实的理论基础和技术支撑。
随着可再生能源的广泛渗透和分布式供能系统的蓬勃发展,储能技术在改善能源供给质量、提高系统稳定性与可靠性、提升综合利用效率等诸多方面日益显示出强大的功效和不可替代的作用,业已成为未来能源系统不可或缺的组成部分和至关重要的关键技术。本项目以科学用能为指导思想,充分利用含压缩空气的复合储能系统冷热电多维能量形式特性,以满足分布式供能系统的多能梯级利用与全工况优化为原则,从系统科学的视角研究含压缩空气的复合储能系统设计、容量配置及主动储能控制基础理论框架和方法体系,主要成果包括:利用对压缩、膨胀设备积累的建模机理和实验经验,对压缩空气储能系统开展基于机理和经验相结合的混合建模方法研究,既可保留机理模型适用工况区间大、普适性强的特点,又具有经验模型简单便于优化控制的优势。提出一种可重构压缩空气储能系统,根据当前工况优化气路结构,改变压缩、膨胀机串并联关系,以避免长时间、大范围偏离设计工况,全面提高压缩空气储能系统的效率、容量利用率和灵活性。提出了一种由压缩空气、蓄电池与超级电容组成的多元多维复合储能系统,以全生命周期成本为经济性目标研究了其容量优化配置方法。充分发挥含压缩空气的多维复合储能具备多响应特性和多能量流接口的特点,在日前调度和实时控制之间加入滚动优化,提出基于主动储能思想的多时间尺度分层优化运行控制策略,主动消纳分布式能源发电的不确定性,实现平衡峰谷和增效节能双重效果。最后,搭建试验平台验证了新方法的有效性。项目相关研究成果共发表论文19篇,其中,SCI收录7篇,EI收录10篇;申报发明专利17项,其中已授权12项;登记软件著作权3件。培养博士研究生5人、硕士研究生15人。项目的完成为突破制约压缩空气储能发展的关键瓶颈提供了坚实的理论基础和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
一种改进的多目标正余弦优化算法
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
基于混合优化方法的大口径主镜设计
面向能源集成的压缩空气储能系统建模与优化研究
低品位热能-压缩空气储能系统集成优化与储气室传热规律研究
压缩空气储能系统的有限时间热力学优化设计方法研究
超临界压缩空气储能系统的研究与探索