Catalytic transformation of biobased chemicals to valuable products is of great importance for the development of biore?nery. Most reported catalytic transformation processes were performed in liquid phase because of the higher boiling points, good solubility (in water) of these biobased chemicals. As the field of chemistry continues to encourage the development of sustainable chemical processes utilizing environmentally benign reaction conditions, the use of water as a "green" solvent becomes an attractive choice. However, the structure-activity relationships of heterogeneous catalysts that scientists have developed over the last century in the gas-solid phase petrochemical industry have not been optimized for use of biobased chemicals in aqueous media. On the base of the active role of water in selective oxidation of glycerol and ethanol, additional research is needed to understand how solvent affects other catalytic transformations on traditional transition metal catalysts. The aim of this suggested project is to disclose the structure-activity relationships of solid catalysts in catalytic oxidation of ethanol, glycerol and glucose in liquid phase. And we will focus our study on the role of solvents as well as the structure of catalysts in these oxidation reactions. A series of solid materials with optimized hydrophility/hydrophobility, acidity/basicity, selective adsorption of biobased chemicals, good hydrothermal stability will be synthesized, and used as the supports for transition metals, alloys, and/or oxides. These catalysts will be tested in the selective oxidation of ethanol, glycerol and glucose in liquid phase. The structure and surface properties of these catalysts in both static state and in-situ state will be characterized in detail, and these properties will be discussed with their activity and selectivity. The role of solvent (water) on reaction mechanism, and on the structure of solid catalysts will be screened, and we will try our best to find the synergistic effect of "catalyst + solvent" in the transformation of biobased chemicals.The structure-activity relationships of solid catalysts in selective oxidation in liquid phase will be proposed on the base of these research works. During the research process, we will discuss our results and suggestions with those famous scientists in this area through manuscript submission, international congress and lectures. Several young scientists will grow up during this research process. We think that this project will contribute to the development of heterogeneous catalysis, especially in the area of selective oxidation of biobased chemicals in liquid phase.
生物质平台化合物的高效转化具有重要的意义,但是在液相反应介质中适合于平台化合物转化的固体催化剂的构效关系与传统的气-固相催化反应过程有明显的差别、研究基础相对薄弱;本项目拟以生物质平台化合物(如乙醇、甘油和葡萄糖)的液相转化为目标,设计和制备系列亲疏水性可调、酸碱性可调、吸附性能可控、水热稳定性良好的多功能固体催化剂,希望通过对催化剂的分散性能、吸附性能、水热稳定性以及反应前后结构与性能的变化规律研究,深入揭示平台化合物转化反应中催化剂的构效关系规律,详细研究反应介质(溶剂等)对平台化合物转化途径和机理的影响、对催化剂结构和性能的影响等,寻找"催化剂+溶剂"的协同作用规律,为生物质平台化合物的高效转化提供理论支持、为液-固相反应中催化剂构效关系规律提供实验依据。这些研究不仅对生物质平台化合物的高效转化具有重要的意义,同时对传统催化理论的发展也具有重要的意义。
本项目严格按照项目计划书的内容,详细开展了项目计划书中各项研究,并取得了重要的进展。我们认为在以下几个方面取得了重要的进展:①在气固相甘油转化的构效关系及高效催化剂的研制等方面取得重要发现突破,首次采用MOFs前驱体制备出具有超高活性、高温度性、具有特殊结构的催化剂。②在乙醇、甘油等生物质原料的选择性氧化反应中Pt基催化剂的失活机理及保护措施等方面取得重要的突破。③在石墨烯复合催化材料、纳米碳管复合催化材料和水滑石基催化材料的绿色、快速合成等方面取得重要的突破。④在甘油制备大宗化学品(乙醇、丙烯醇等)方向的初步研究取得了重要的进展。.新发现:①在气固相甘油氢解反应中,催化剂的活性主要与催化剂中Cu-ZnO的界面有关,这一成果进一步拓展了甘油氢解反应中铜基催化剂的构效关系(传统的观点认为:铜催化剂活性与其分散度成正比)。②揭示了生物质平台化合物氧化反应中可以导致催化剂失活的主要因素(活性组分的流失、团聚、氧中毒、产物及中间体的强吸附等),制备出了可以有效防止上述问题的催化剂及制备工艺。③提出了甘油制备乙醇反应的机理及催化剂的构效关系。.上述研究成果引起国内外研究同行的重点关注和积极评价。先后发表SCI论文22篇、国际会议论文10篇、申请国家发明专利11件(其中2件已授权)、培养硕博士研究生11人、参加国际国内学术会议8人次。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
服务经济时代新动能将由技术和服务共同驱动
内质网应激在抗肿瘤治疗中的作用及研究进展
煤/生物质流态化富氧燃烧的CO_2富集特性
不同交易收费类型组合的电商平台 双边定价及影响研究
铒基催化剂催化生物质转化制乳酸的构效关系
降糖三萜化合物生物转化及构效关系研究
Cu基催化剂作用下甲烷-合成气定向合成乙醇的构效关系
CO高效转化用纳米催化剂的可控制备与构效关系研究