With the rapid development of communication and computer technology, the demand for high-performance microwave absorbing materials is strong in high frequency. The materials are required to use in larger absorbing bandwidth, possess light weight and large reflection loss. The preliminary research shows that the key for obtaining lightweight microwave materials is the utilization of single layer two dimensional atomic crystals, and the effective way for enhancing high-frequency electromagnetic wave reflection loss is multi-reflection of two dimensional atomic crystals and interlayer coupling between two dimensional atomic crystals and magnetic metal nanoparticles. In the project, two dimensional atomic crystals/magnetic metal nanoparticles compounds will be prepared by various physical and chemical methods. The interrelated mechanism between stacking hierarchy, order of spatial structure configuration and enhancement of high-frequency electromagnetic wave multi-reflection loss, between microscopic interface construction and enhancement of high-frequency electromagnetic wave interface coupling loss will be researched systematically. The multi-Debye relaxation process of complex permittivity and the superposition mechanism of natural resonance and exchange resonance of complex permeability will be explored. The quarter wavelength matching model of high-frequency electromagnetic wave for the compound will be analyzed. The mechanism of two dimensional atomic crystals/magnetic metal nanoparticles compounds as light-weight absorbers will be clarified. The light-weight microwave absorber with excellent microwave absorbing properties will be obtained. The experimental and theoretical basis will be provided for the exploitation and manufacture of light-weight microwave absorber.
通讯和计算机的高速发展对在高频范围内工作的高性能吸波材料具有很强的需求,要求可在宽电磁波频段工作的吸波材料同时具有轻量化和强反射损耗特征。前期的研究工作表明单层二维原子晶体的利用是吸波材料轻量化的关键,二维原子晶体的多级反射和二维原子晶体/磁性金属纳米颗粒的界面耦合是高频电磁波反射损耗增强的有效途径。本项目将采用多种物理化学方法制备二维原子晶体/磁性金属纳米颗粒复合材料,系统研究空间构型的堆垛层级及次序与高频电磁波多级反射损耗增强、微观界面结构与高频电磁波界面耦合损耗增强之间的内在规律与影响机制,探索材料复数介电常数的多重德拜弛豫过程和复数磁导率的自然共振/交换共振叠加机制,分析材料高频电磁波反射损耗的四分之一波长匹配模型,阐明二维原子晶体/磁性金属纳米颗粒复合材料对吸波材料轻量化作用的机理机制,获得具有优良吸波性能的轻量化吸波材料,为新型轻量化吸波材料的开发研制提供实验与理论依据。
二维原子晶体/磁性金属纳米颗粒复合材料在高性能吸波材料方面具有广阔的应用前景。本项目利用化学法、高温高压方法等多种合成手段系统制备调控多种二维原子晶体,包括石墨烯、二维过渡金属硫化合物、黑磷、新型高导电二维层状材料GeP5、二维磁性半导体等多种材料体系,同时拓展材料体系至MOF衍生碳、光子晶体衍生碳、碳纳米管、B4C等多种材料,在此基础上构建多种空间构型和微观界面结构到达吸波性能增强。系统研究NiCo2/石墨烯、CoS2/石墨烯、FeNi/石墨烯、黑磷/石墨烯泡沫、FeS2/石墨烯、CrCl3/石墨烯、碳纳米管/MoS2、新型二维层状材料GeP5和多孔Ge纳米片、MOF基衍生复合材料(硫化、磷化、硫磷化)、MOF合成CoFex@Co@C、Ni/碳复合材料、碳包裹B4C纳米颗粒、碳纳米管/NiCo2、光子晶体衍生碳/Fe复合材料、高温碳化和水热碳化光子晶体等多种吸波材料,达到阻抗匹配并获得优异的高频电磁波吸收性能,并得到多种高性能吸波材料的高频电磁波反射损耗四分之一波长匹配模型。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
磁性金属-铁氧体软磁纳米颗粒膜的高频磁性研究
磁性金属纳米颗粒的可控制备及其高频性能的研究
高频用磁性薄膜损耗特性研究
原子级厚度二维晶体的铁磁性研究