Emergency medical rescue, which aims to save lives and ensure health, plays a vital role in disaster reduction and relief programs. The key to rational medical resources allocation and medical rescue efficiency improvement lies in accurate assessment of the emergency medical demands. First, this study will propose a systematic review of the injury timing and characteristics after large-scale natural disasters, based on the regulation of “Two-Period, Three-Stage” in emergency medical rescue, which was put forward by our research group. A standardized database of the wounded’s medical demands will then be constructed, including the injury type,location, and severity, based on the empirical research and modeling of emergency medical rescue from four earthquakes and two tornados that occurred over the past 10 years in China. Third, the main factors that influence emergency medical demands (the injured agent, disaster agent, and rescue agent) will be analyzed and defined. A composition of the major agents involved, their behavioral patterns, and their interactions will also be identified. Based on the established medical demands database, the AnyLogic platform will be used to construct a multi-agent model of emergency medical demands after large-scale natural disasters. This model will be able to simulate how medical demands after disasters evolve at different stages, including the different backgrounds and behaviors of the agents involved. The purpose is to reveal the internal mechanisms by which medical demands transform, screen for key political intervention targets, and form a strategic plan to optimize emergency medical resources allocation so as to promote accurate, scientific decision-making during emergency medical rescue after natural disasters.
以生命健康为目标的应急医学救援是减灾救灾工作重中之重。应急医疗需求的精准预判,是合理医疗资源配置、提高医学救援效率的的关键所在。基于课题组前期提出的灾害应急医学救援“两期三段”规律,以课题组10年来对国内4次地震、2次龙卷风灾害的应急医学救援实证及建模研究为基础,本研究进一步系统总结大规模自然灾害伤员发生时序以及伤情特征,构建包括不同伤情、伤类、伤势的伤员医疗需求标准化数据库,分析并界定影响伤员医疗需求发生的主体要素(伤员主体、灾害主体、救援主体等),厘清各主体组成、行为规则和交互方式,结合标准化医疗需求数据库,基于Anylogic仿真平台,构建大规模自然灾害医疗资源需求发生多主体模型,模拟灾害不同阶段、不同背景、不同主体行为下医疗需求演化规律,揭示医疗需求转化的内在机制,筛选关键政策干预“靶点”,形成应急医疗资源配置优化策略方案,促进自然灾害应急医学救援决策科学性与精确性的提升。
我国大规模自然灾害频发,公共安全形势严峻,应急医学救援面临巨大挑战。以生命健康为目标的应急医学救援是减灾救灾工作重中之重。应急医疗需求的精准预判,是合理医疗资源配置、提高医学救援效率的关键所在。本项目基于文献资料收集以及2次龙卷风灾害实地调研,进一步系统总结大规模自然灾害伤员发生时序以及伤情特征,构建包括不同伤情、伤类、伤因、伤势的自然灾害伤员本底数据,系统分析了我国地震、龙卷风伤员的创伤伤病谱。在自然灾害伤员伤病谱的基础上,本项目细化自然灾害背景下医疗资源需求种类(医务人员专业类别、救治技术、药材器械类别等),对每项救治操作所需药品器械类型与数量进行测算,完成自然灾害应急医疗资源配置策略方案,为灾害应急医疗队人员抽取、物资准备提供一手资料。并且,课题组利用1900年至2016年206次地震记录,建立了强度大于6级的中国地震死亡快速预测模型,实现地震伤亡规模的快速精准预估。地震伤亡快速评估可以为救灾资源调度和救援人员分配指明方向,从而最大限度地挽救人员生命损失,体现地震应急的核心理念。同时,课题组基于多主体建模理论,界定了龙卷风伤员创伤发生主体,以及主体的行为规则,构建了龙卷风创伤发生模型,定量模拟了盐城、开原两次龙卷风群体伤员创伤的发生过程,并从预警时间、灾民行为、房屋倒塌3方面开展干预实验,为防灾减灾提供循证依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
面向多主体的应急预案体系语义模型研究
供应中断下基于演化信息驱动的多主体动态应急策略研究
面向医疗联合体的多主体医疗资源整合协调与运作管理研究
基于智能多主体的非常规突发事件多准则动态应急决策研究