The building node structures with complicated shape and dense reinforcement, such as the intersection point between the wall, plate, beam, column, are the most vulnerable area for thermal performance. Wet accumulation, bacterial growt, the deterioration of heat transfer performance and the degradation of structural safety can easily produced in these areas. The materials inside such nodes are inhomogeneous, and the external structure of the nodes are irregular. The heat and moisture transfer process is impacted by the proportion of heterogeneous material and the combination boundary of special-shaped. And the heat and moisture transfer path is complex, the distribution of isothermal/wet line is non-uniform. Resulting in that this transfer process has significant multidimensional non directional characteristics. The existing coupled heat and moisture transfer theory and the related thermal calculation method are difficult to reveal the complex nature. Therefore, this project intends to investigate and master the structural form of typical building nodes and establish physical models. The heat and moisture transfer mechanism of multi-phase heterogeneous material is analyzed, and the boundary condition characteristics of multi-dimensional heteromorphic nodes are characterized. The mathematical model of the heat and moisture transfer process of building nodes is established. Based on the simulation calculation, the heat and wet state of the inside and surface of nodes are determined. The way and the occurrence condition of moisture phase change are mastered, and the calculation method of the surface heat and moisture transfer amount is put forward. A new method for calculating thermal loss of typical node structure is proposed by means of superposition under multi-dimensional coupling heat and moisture transfer process. The research results can provide the basis for improving the damp proof performance and reducing the overall heat transfer loss of the building.
广泛存在于墙、板、梁、柱等建筑组合处的节点结构形状复杂、配筋密集,为热工性能薄弱区域,极易产生湿积累细菌滋生、传热性能恶化、结构安全性破坏等问题。此类节点结构内部材料各向异性、外部结构异形,其热湿传递过程受非均质材料配比、异形组合边界等因素影响,传热传湿路径复杂,等温/湿线非均匀分布,具有显著多维非定向特征。现有低维均质建筑结构热湿传递理论与简化热工计算方法难以揭示其复杂本质。因此,本项目拟通过调查常见建筑节点构造,提出数种典型异性异形建筑节点结构形式并对其进行物理描述;阐明各向异性组合建筑材料热湿传递机理,表征多维异形节点结构边界条件,建立节点结构热湿耦合分析数学模型;通过数值计算,确定节点内部及表面热湿状态,掌握湿相变方式及发生条件,提出表面热湿迁移量计算方法;构建典型节点结构多维热湿耦合条件下热损失叠加计算新方法。研究成果可为提升围护结构防潮性能、降低建筑整体传热损失提供依据。
广泛存在于墙、板、梁、柱等建筑组合处的节点结构形状复杂、配筋密集,为热工性能薄弱区域,极易产生湿积累细菌滋生、传热性能恶化、结构安全性破坏等问题。此类节点结构内部材料各向异性、外部结构异形,其热湿传递路径复杂,等温/湿线非均匀分布,具有显著多维非定向特征。因此,本项目以揭示此类建筑节点结构多维动态热湿耦合传递特性、提出复杂结构建筑节点热损失计算修正方法为研究目标。.通过四年的科学研究,掌握了各向异性且结构异形的建筑节点结构特征及热湿耦合迁移机理,实验研究获得了建材热湿物性参数随温湿度变化特征,为节点结构热湿迁移计算提供了准确的基础数据;掌握了建材异性且结构异形对建筑节点结构热湿传递特性的影响;获得了建筑节点结构热湿传递过程对内部及表面热湿特性的影响;开展了建筑节点内表面结露的室内临界状态点及其构造优化调整研究,并提出了避免节点结构表面发生结露的措施;通过计算分析了传湿过程对建筑节点结构传热量的影响,提出了节点结构局部传热系数计算方法,获得了考虑节点结构热湿传递影响的墙体等效传热系数修正方法。研究成果为提升围护结构防潮性能、准确计算建筑整体传热损失提供依据。.研究成果发表期刊论文15篇,其中SCI检索11篇,EI检索2篇,发表会议论文2篇,授权发明专利7项,获“华夏建设科学技术特等奖”等科研奖励5项,协助指导本方向博士研究生毕业1人,指导硕士研究生毕业11人。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移
非牛顿流体剪切稀化特性的分子动力学模拟
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
非湿饱和介质孔隙结构内微细现象和热湿传递特性
建筑热湿特性灰色模型分析方法研究
夏热冬冷地区居住建筑围护结构的动态多维热湿耦合传递与节能优化研究
夏热冬冷地区整体建筑热湿耦合传递一体化研究