Plant photoreceptors receive light signal, and transfer the signal to the biosynthesis of downstream procedures including anthocyanin, step by step. Red pears belonging to different species with different genetic backgrounds and coloration patterns may have the distinct transcriptional regulation for related anthocyanin biosynthesis genes compared with apple. Anthocyanin biosynthesis in red pears is a high light involved process. More attention was paid to the downstream structural and regulatory genes directly related to anthocyanin synthesis in the study of molecular mechanism of coloration in red pears, while upstream genes indirectly involved in UV-B signal transductionhave been ignored. What's more, the limited and single materials and light treatments in the previous studies related to red pear would not be favorable to the comprehensive understanding of molecular regulation mechanism of different kinds of red pears with different abilities in response to light signal. Therefore, in this project, typical red pears including Oriental pear and Occidental pear with different coloration patterns will be used to study molecular mechanism of coloration in red pears in response to light signal. Different light treatments will be used to induce different accumulation of anthocyanin in different red pears. Key candidate genes participating in UV-B signal transduction pathway related to anthocyanin biosynthesis will be found. Electrophoretic mobility shift assay and yeast two-hybrid assay will be further used for the analysis of relationship between UV-B signal transduction genes and anthocyanin structural and regulatory genes. Transient dual luciferase assay and transgenic technology will also be used for the analysis of their functions. The research will be helpful to clarify the light regulation mechanism of anthocyanin biosynthesis in red pears, enrich the theory of molecular mechanism of fruit anthocyanin biosynthesis,and give us good guidance for producing red pear fruit with attractive appearance.
光信号可作用于植物光受体,并通过信号转导途径逐级向下游传递信号调控花青苷合成。红梨花青苷合成需要高强度的光照,目前对受光调控下游直接参与花青苷合成的结构和调节基因的关注较多,忽略对上游间接调控花青苷合成的光信号转导途径基因的研究,此外,试验设计中,没有细分不同光质,没有选用具有不同光应答效应的试材,难以全面认识梨花青苷合成光信号应答分子机制。本研究,拟以具有不同光应答效应红色砂梨和西洋梨典型品种为试材,通过控制UV-B和可见光照射条件,诱导红梨花青苷差异积累,筛选关键UV-B信号转导基因,利用凝胶迁移、酵母双杂交和双分子荧光互补等技术分析候选基因与花青苷合成结构和调节基因在体内外的互作调控关系,再利用拟南芥转基因和梨果实瞬时表达系统鉴定其功能。研究成果有助于阐明梨花青苷合成的UV-B信号应答分子机制,进一步丰富果实花青苷合成的生物学理论,同时对于指导优质红梨生产的着色调控具有现实意义。
为解析梨果皮花青苷合成光信号应答分子机制,项目组按照研究计划,首先以红色砂梨为主要材料,通过对不同光照条件的筛选,建立了采后人工光源(UV-B+白光)诱导红梨着色的调控技术,光强和光质都对红梨着色具有重要影响,高光强有利于红色砂梨着色,UV-B和白光在红色砂梨果皮花青苷积累方面具有显著地互作增益效应。研究还发现,西洋梨和砂梨(红梨最主要的两大系统)花青苷合成光应答机制机制存在显著差异,砂梨品种满天红在套袋和采后紫外光/可见光处理过程中能较好的着色,而西洋梨品种凯斯凯德则几乎不着色,花青苷合成相关酶的活性(PAL和DFR)和相关基因的表达(CHS3、CHI3、UFGT1和MYB10)与花青苷的积累呈正相关,该项工作对砂梨和西洋梨花青苷合成光应答机制做了初步解析,为后续研究提供了良好试材。利用转录组和miRNA组测序技术,挖掘筛选红梨花青素合成光信号应答关键基因,获得CRY、HY5、COL5和COP1以及花青苷结构和调节基因,鉴定出miR156-SPL参与花青苷合成光信号应答,为进一步确定这些基因参与花青苷合成光信号应答可能的作用机制,克隆了这些基因,对它们序列特征及其在光诱导花青苷合成过程中(采后UV-B处理、套袋处理和不同光照环境生态区)的表达模式做了系统验证和分析,本研究还构建了红梨果皮cDNA 酵母文库,以红梨花青苷关键基因MYB10为诱饵,进行互作蛋白筛选,并利用烟草瞬时表达和酵母双杂交技术,对MYB和WD40、bHLH、SPL和HY5等一些关键蛋白互作关系做了验证分析,首次对红色砂梨中参与花青苷合成调控的WDB蛋白复合体互作关系作出系统鉴定,证实其在红色砂梨花青苷合成调控起着关键作用,且在不同物种中较为保守。构建了红梨花青苷光信号应答关键基因过表达载体,通过转化拟南芥对其功能做了初步鉴定。基于以上研究,提出了红梨花青苷合成光信号应答机制的工作模型。本研究建立了采后诱导红梨着色的调控技术,筛选出具有不同花青苷合成光应答机制的试材,建立了红梨果皮转录组和miRNA组数据库以及cDNA 酵母文库,明确了梨花青苷生物合成光信号转导途径关键环节,并对这些环节调控机制做了鉴定,研究结果解析了梨花青苷合成的光信号应答分子机制,丰富了果实花青苷合成的生物学理论,对指导优质红梨生产的着色调控具有现实意义。已发SCI收录论文3篇,ISTP收录1篇,另有2篇SCI收录论文回修中。
{{i.achievement_title}}
数据更新时间:2023-05-31
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
转录组与代谢联合解析红花槭叶片中青素苷变化机制
肉苁蓉种子质量评价及药材初加工研究
Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
可见光和UV-B协同诱导梨果皮花青苷合成的光信号应答分子机制研究
梨miR156及其靶基因SPLs介导花青苷合成光信号应答的分子机制
蓝光与UV-B复合协同效应诱导花青素合成的光信号转导
光信号诱导茄子花青素合成的分子调控机制研究