The dynamics of the geared rotor bearing system of traction motor for railway locomotive diving system was researched by academy and engineering using traditional methods, and the nonlinear factors were also neglected. The problems of nonlinear dynamics in geared rotor bearing system for locomotive diving system with rotor-impact are studied in the program, so as to verify the dynamics characteristics, chaotic evolution mechanism under the constraint incentives in the diving system, bring up the stable operation rules as well as the principle of stability margin. The detailed contents are as follow: ⑴ A new dynamic model of geared rotor bearing system for locomotive diving system with rotor-impact and disturbance variables is established in the paper; ⑵ Effects of nonlinear dynamics characteristics and chaotic behaviors for the diving system are analyzed, taking into account the small gaps incentive, the rotor unbalance and initial disturbances; ⑶ The global character to typical steady-state with balance or imbalance is researched by using the mixed cell mapping method, so as to find the global stability and the stability margin criterion of geared rotor bearing system for locomotive diving system; (4) In order to discuss the results of the simulation experiment to the nonlinear dynamics, prove the nonlinear phenomena such as doubling period, almost periodic, chaos and evolution mechanism of the diving system, a 'hardware in the loop' simulation platform is set up. Nonlinear dynamics characteristics revealed in this work are of great significance to the theoretical guidance for dynamics design, vibration controlling and fault identification to geared rotor bearing system of railway locomotive diving system.
学术和工程界大都采用传统方法研究铁路机车牵引电机转子-齿轮驱动轴系的动力学问题,忽略了系统的非线性因素。本项目拟通过含碰摩故障的机车转子-轴承-齿轮驱动系统若干动力学问题的研究,揭示多重约束激励下驱动系统复杂的动力学特性及混沌演化机理,归纳系统稳定性、稳定性裕度判别准则。包括:⑴考虑转子碰摩故障和多种干扰量,建立机车驱动系统非线性动力学模型;⑵研究各种小间隙激励、转子不平衡量、多种扰动因素对驱动轴系非线性动力学及混沌行为的影响;⑶利用全局分析的胞映射法,分析平衡及不平衡驱动系统典型稳态解的全局特性,以揭示机车非线性轴承-转子-齿轮驱动系统全局稳定性、稳定性裕度判别准则;⑷建立驱动系统硬件在环仿真平台,进行驱动轴系非线性动力学模拟试验研究,进一步验证轴系呈现的周期、拟周期、混沌等非线性运动行为及演化机理。研究成果将为铁路机车故障转子-齿轮驱动系统的动力学设计、振动控制和故障辨识提供指导。
针对目前HXD机车及高速动车组很少发生转子碰摩故障,将研究内容进行了修改,部分考虑碰摩及不考虑碰摩影响,分别建立机车驱动系统动力学模型,根据非线性振动理论研究参数变化时,系统非线性行为演化机理和参数稳定性。主要工作包括:⑴以某型机车为研究对象,推导出牵引电机局部碰摩的发生条件;计及碰摩影响构建了非线性刚度‒碰摩转子、滚动轴承‒转子耦合系统非线性动力学模型,分析滚动轴承间隙、转子不平衡量、阻尼等参数对系统非线性行为的影响,同时利用Floquet理论讨论了机车轴承‒转子耦合系统的稳定性。⑵不考虑碰摩构建了3自由度、5自由度机车齿轮传动弯扭耦合动力学模型;分别采用石川法、Weber法、改进的Weber法计算时变啮合刚度,讨论了支撑刚度、支撑阻尼和齿侧间隙与系统非线性行为之间的变化关系,分析轨道不平顺和机车蠕滑速度对动力学特性的影响,结合Floquet理论探讨模型参数对系统稳态特性的影响规律。⑶不考虑碰摩建立单自由度系统、12自由度平行轴机车耦合转子模型,计算其临界转速;采用胞映射法讨论了齿侧间隙、啮合误差等对系统全局特性的影响,发现系统多周期解共存、周期解与混沌共存现象以及吸引域演化规律;研究了静态传递误差、齿轮偏心等对机车弯-扭-轴-摆耦合转子系统动力学的影响。⑷利用Simpack构建了动车组多体系统动力学MBS模型,将实测线路数据作为轨道随机不平顺激励,通过脱轨系数、轮重减载率、轮轨横向力、轮轨垂向力等稳定性指标的计算和分析,验证了MBS模型的正确性。⑸建立了含轮齿裂纹的机车驱动系统数学模型,根据多尺度法研究了系统主共振和1/3次亚谐共振稳定性,探明了系统动力学特征与轮轨蠕滑率等多种激励变化的规律,以及裂纹程度与稳定性的对应关系。⑹搭建了齿轮传动系统硬件在环仿真平台,进行健康和故障齿轮传动系统动力学模拟试验研究。通过研究为机车驱动系统的动力学设计和振动控制提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
转子/定子碰摩系统的非线性模态分析与碰摩响应预测
含涂层的航空发动机转子-机匣系统的碰摩故障研究
转子-轴承系统碰摩故障自愈调控原理与方法研究
含早期故障的高速机车轮对系统非线性动力学行为研究