The research in the field of fuel cell and metal-air battery is still focused on the Oxygen reduction reaction (ORR) in the cathode. However, it is necessary for the problem of catalysts to be studied further because of low activity, poor durability and selectivity of current non-precious catalysts. .In this project, design and preparation 3D ordered porous catalysts containing nano-channel through intercalating nano-carbon materials ( such as C60, carbon nano-tube, nano-wire, and graphene scrolls) between the layers of nitrogen-doped grapheme sheets by the way of in-situ synthesizing, self-assembly and bonds-link methods are studied. Critical scientific issues are studied, such as enhance-mass-transfer nano-channel architectures, synergetic effects of structural modifications and precursors screening of catalysts. Enhance mass transfer mechanism and catalytic synergetic effects of substance and charge carriers in the catalysts are explored. The regulation of preparation of catalyst, which can enhance mass transfer and have high activity and long lifetime, is revealed by studying the relation between construction of nano-architectures and catalytic performance. The improvement in the catalytic activity, selectivity and durability offers the material base and theoretical foundation for high-performance fuel cells and metal-air battery. Furthermore, it will be providing materials foundation for lithium ion battery, solar cell, supercapacitors, electrochemical sensor and electrolysis..The works of this project has important theoretical research value and extremely broad application prospects.
氧气在电池阴极的还原反应一直是燃料电池和金属空气电池领域的研究热点。但是,现有的非贵金属催化剂仍存在催化活性低、选择性和耐久性差的问题,有必要对该问题进行深入研究。本项目用氮掺杂石墨烯的层间插入纳米碳材料,采用原位生成、自组装、键链等方法,设计、制备含有纳米通道的三维有序多孔结构催化剂。通过强化传质纳米通道的构筑方法、结构修饰、协同效应和催化剂前体筛选等关键科学问题的研究,探索物质和载流子在催化剂内强化传递的机制和催化协同效应。研究纳米通道构筑与催化剂催化性能之间的关系,揭示强化传质、存在催化协同效应的高活性、长寿命催化剂制备的规律。解决该类催化剂催化活性低、选择性和耐久性差的问题。不但可为高性能燃料电池和金属空气电池提供物质基础和理论支持,而且也为锂离子电池、太阳能电池、超级电容器、电化学传感器、电解等奠定物质基础,具有重要的理论研究价值和广阔的应用前景。
燃料电池或金属空气电池阴极的氧还原反应由于反应活性差,所以,其催化剂的研究受到普遍重视。成为近年来燃料电池领域的研究热点。本课题以强化传质和协同效应为突破口,研究三维石墨烯、氮掺杂三维石墨烯等多孔材料的孔径、孔隙率、比表面积等因素对催化剂催化性能的影响;研究了三维石墨烯固载的平面聚合酞菁(卟啉)配合物催化剂的协同效应;研究了纳米碳管固载的二氧化锰纳米棒构筑的三维纳米通道对强化传质、催化性能的影响和协同效应;研究了三维石墨烯作为载体对纳米氧化物类催化剂的结构、形貌的影响,制备得到的高指数晶面对催化性能显著提高;研究了新型膜电极的制备工艺和新型镁空气电池阴极;研究了大容量镁空气电池的设计及实施等等。通过强化传质纳米通道的构筑方法等关键科学问题的研究,探索了物质在催化剂内强化传递的机制,揭示强化传质的高活性催化剂制备规律。解决该类催化剂催化活性低、选择性和耐久性差的问题。为高性能燃料电池和金属空气电池提供物质基础和理论支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
三级硅基填料的构筑及其对牙科复合树脂性能的影响
上转换纳米材料在光动力疗法中的研究进展
煤/生物质流态化富氧燃烧的CO_2富集特性
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
高效非贵金属氧还原催化剂的理性构筑及催化机理的研究
宏量可控构筑原子尺度非贵金属氧还原催化剂及催化机理研究
原子尺度非贵金属氧还原电催化剂的可控构筑及催化机理研究
负载型非贵金属催化剂的可控制备及其催化氧还原反应的研究