This project is concerned with the finite-length LDPC coding for low-latency and high-reliability scenarios in 5G communications. The optimized design, structure analysis, and the efficient decoding of both short nonbinary LDPC codes for the intermittent short-data packet communications and rate-compatible LDPC codes for continuous long-data packet transmissions are investigated. Based on the isomorphism theory, we will study new coding methods which can low the error floor and improve the waterfall performance, and construct good LDPC codes with the ability to meet the system delay and performance requirements and low coding complexity. Combined with the efficient decoding algorithms, such as maximum likelihood (ML)/approximate ML (AML) algorithms, low latency algorithms, we will propose the finite-length LDPC coding scheme with high performance. The research will include the following topics: isomorphism theory of LDPC codes; construction, optimization and ML/AML algorithms with low complexity of nonbinary LDPC codes; design and the decoding algorithms with low latency of rate-compatible LDPC codes; the optimal shortening and puncturing schemes for quasi-cyclic LDPC codes.
本项目面向5G低时延高可靠通信场景,并以应用在间歇短数据包通信的多元LDPC短码和连续长数据包传输的速率兼容LDPC码这两种不同码型为基础,深入研究有限长LDPC码的优化设计、结构分析及高效译码算法。基于同构理论,研究降低错误平层和改善瀑布区性能的新方法,并构造满足时延和性能要求、编译码复杂度低的实用好码,结合最大似然或近似最大似然、低时延等高效译码算法,提出高性能的有限长LDPC编码方案,为未来移动通信中的移动互联网和物联网等业务通信提供技术支持。主要内容包括:LDPC码的同构理论;多元LDPC码的构造与优化,及其低复杂度最大似然或者近似最大似然译码算法;速率兼容LDPC码的设计及其低时延高效译码算法;准循环LDPC码的最优缩短和打孔方案。
LDPC码已是5G eMBB数据信道的编码技术。本项目通过分析LDPC码的关键结构,深入研究了二元/多元LDPC码的构造方法,并优化设计出满足要求的好码,从而为低时延高可靠通信提供有效的LDPC编码方案。主要研究内容和重要成果包括以下三个方面:第一,基于图的同构理论提出了阵列码行/列索引的同构理论;将循环矩阵转化为非零元素位置集合提出了循环矩阵的同构理论;给出了基于有限域构造的准循环LDPC码的一些性质,提出码优化设计方法。第二,通过分析Tanner(J,L)-规则准循环LDPC码的环结构,给出了有限码长的Tanner码围长分布,还基于辗转相除法确定了5类Tanner码的围长;通过分析5G-LDPC码的Exponent矩阵,给出了5G-LDPC码的环结构并提出了对角型LDPC码的优化设计方法;基于可分组设计研究了具有行列约束矩阵的部分几何,并提出了LDPC码的构造方法;通过扩展阵列码,并基于行和列选取方法提出了准循环LDPC码的构造方法,还得到了一些扩展因子的下紧界;基于代数方法提出了两种变速率准循环LDPC码的构造方法;基于代数方法和Packing提出了两种咬尾全局耦合LDPC码的构造方法,还分析了它们的迭代译码门限;基于可分解设计提出了掩模矩阵和叠加矩阵的构造方法。第三,基于同构理论提出了满足Gallager下界的两类准循环LDPC环码构造方法,证明了基于平面差集构造的LDPC环码仅有一个同构类;将循环矩阵转换为位置集合,提出了低秩循环矩阵的有效穷搜索算法和多元LDPC码的优化设计方法;根据图的边-点关系提出了一种多元LDPC环码构造体制,并基于有限域和循环矩阵给出了一种多元LDPC码的构造方法;根据Tanner码的Exponent矩阵,通过掩模技术和行/列选取技术提出了构造LDPC码的新方法。本项目主要发表21篇学术论文,其中SCI检索论文13篇,EI检索论文2篇,会议论文4篇,申请了国家发明专利3项,培养河南省教育厅学术技术带头人1人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于极化码的无协商密钥物理层安全传输方案
Packing additional bits into LDPC coded data
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
改进交织的单层极化码高阶编码调制系统
LDPC码的译码性能分析及其应用
有限长空间耦合LDPC码的设计与译码研究
LDPC码的构造及基于置信传播的译码算法研究
结构化LDPC码的代数构造及译码研究