With the development of visible light communication technology and its expansion of applications, the exploitation of chips with considerable advantages of high integration, miniaturization and intelligence is required. However, the high speed integrated photonic chips have not yet been achieved due to the limitation of the performance of individual devices, including the narrow modulation bandwidth of LEDs and the slow response speed of visible photodetectors. In this project, we propose the integration of metal/semiconductor micro-nano structures into GaN-on-Si LEDs and photodetectors. The modulation bandwidth of LEDs and response speed of photodetectors would be improved through the effects of nanophotonics and its optoelectronic engineering in the devices. The research will focus on (i) studying the interaction mechanisms between surface plasmon (SP) and InGaN/GaN multiple quantum wells (MQWs) and developing alternative methodology of light manipulation in such optoelectronic devices; (ii) understanding of the effects of SP-exciton coupling on the exciton recombination rates and establishing of physical correlation between LED device performance and optical structures by means of various characterization methods, e.g. the time-resolved photoluminescence; (iii) investigating the influence of SP/dielectric resonances on the photoresponsivity, dark current and response speed of InGaN photodetectors. Through this project, high speed integrated photonic chips, guided along low-loss waveguides, will be demonstrated with both broader modulation bandwidth LEDs and fast response photodetectors. The outcomes of this proposed project will enrich the knowledge of fundamental physics in micro-nano structures and GaN-based optoelectronic devices and pave a new way to achieve high-performance integrated photonic chips for further development of visible light communications.
随着可见光通信技术的不断发展和应用前景的日益扩大,集成化、微型化、智能化的芯片开发已成为通讯领域发展的迫切需要。本项目针对可见光通信集成芯片中LED调制带宽窄和探测器响应速度慢等科学问题,提出以硅衬底氮化镓基LED和探测器为研究对象,通过集成金属/半导体微纳复合结构,构建新型光场及其与物质相互作用的精密调控,提高LED调制带宽和探测器响应速度。项目将重点研究表面等离激元与InGaN/GaN多量子阱相互作用的新机理,寻求光场调控的新方法;利用时间分辨光致发光谱等手段考察等离激元-激子耦合效应对激子复合速率的影响,建立LED器件性能参数与微纳结构相关联的物理模型;揭示表面等离激元-介质共振模式对InGaN探测器响应度、暗电流、响应速度的调控机理和影响规律,探索获得高性能InGaN探测器的实现途径。最终通过低损耗波导互联技术,研制出高速可见光通信集成芯片,为可见光通信技术发展提供新的技术途径。
可见光通信具有高速、大容量、安全、节能的技术特点,是未来空天地海一体化6G通信网络的重要组成部分。本项目拟针对可见光通信集成芯片中LED光源调制带宽窄等问题,探讨生长高质量的LED外延片,利用TEM和时间分辨光致发光谱等手段研究LED的材料质量,利用金属/半导体微纳复合结构来激发的表面等离激元耦合效应来提高LED光源的调制速率,研究表面等离激元与多量子阱耦合等相互作用机理,建立LED器件性能参数与器件结构相关联的物理模型,获得高性能Micro-LED的实现途径,为可见光通信技术发展提供一种新的技术途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于混合优化方法的大口径主镜设计
混沌保密光通信关键技术和微纳光子器件子系统集成芯片研究
金属/半导体复合微纳结构非线性光学特性的量子调控
金属-介质-半导体复合微纳结构中光子-激子强耦合的动态调控
基于半导体/金属微纳复合结构实现对太阳光谱的高效调控及光-热-电转换