Blood pressure waveform contains a wealth of physiological and pathological information of cardiovascular system. In the early onset of cardiovascular and cerebrovascular diseases, some exception information is already contained in the arterial blood pressure waveform. The accurate measurement of blood pressure waveform is of great significance for both clinical medicine and basic science. In this project, an airbag probe used to detect artery blood pressure waveform is made of a flexible thin-film. The airbag sensing probe is developed convenient to be worn on the wrist. And we use binocular stereo vision to detect the macro-distant of airbag probe deformation. Build multi information synchronization acquisition, detection and control system for airbag deformation, airbag internal pressure, and probe pressure loading. And adjust the probe pressure based on artery nonlinear mechanical characteristics, in order to sensitively acquire the film deformation which reflects the changes in blood pressure. Based on the deformation constraint of airbag probe film and movement constraint of artery, obtain the time-spatial domain deformation of the internal surface of airbag probe. Furthermore, the three-dimensional dynamic deformation should be analyzed in time-spatial domain and transform domain, In order to obtain the essential characteristics of blood pressure. The mechanical model of the probe film and vascular is planed to be built to research the transform and delivery mechanism of blood pressure. Finally, based on Hemodynamics, Information Fusion and Finite Element Analysis and other theories or methods, we can reveal the dynamic relationship and laws between blood pressure and other signals, such as time-spatial domain deformation of the thin-flim internal surface of airbag probe, pressure load and the internal pressure of probe. The mathematical model of blood pressure measurement is planned to be established to achieve accurate measurement of continuous blood pressure. It also can enhance our understanding of pulse information in Traditional Chinese Medicine pulse diagnosis.
血压波形中包含心血管系统丰富的生理和病理信息。在心脑血管疾病发病早期,某些异常信息已经蕴涵在动脉血压波形中。血压波形的精确测量对于临床医学和基础医学均具有重要意义。本项目采用柔性薄膜形成气囊探头,作用在桡动脉上,依据气囊薄膜时空域形变,检测桡动脉血压波形。研制方便配戴在腕部的气囊传感探头,基于双目视觉实现气囊形变的微距检测;依据薄膜的形变约束和动脉血管的运动约束,获取气囊施压下气囊内表面的时空域形变,并对该形变进行时空域和变换域分析,以期获取反映血压的本质特征。构建气囊形变、气囊内压、探头加载压力多信息同步采集、检测和控制系统;建立气囊薄膜与血管间作用的力学模型,研究气囊施压下血压经动脉壁和周围组织至皮肤形变的变换与传递机制。揭示血压与气囊薄膜时空域形变、施压载荷、探头内压等信号间的动态联系与规律,建立血压测量的数学模型,以期实现无创血压波形的精确测量,并加深对中医脉诊机理的认识。
血压波形中包含心血管系统丰富的生理和病理信息。在心血管疾病发病早期,某些异常信息已经蕴涵在动脉血压波形中。若能精确无创地连续监测血压波形,就可以获得更多的生理、病理信息,有助于对心血管疾病的有效预防及诊断治疗。本项目采用柔性薄膜形成气囊探头,作用在桡动脉上,依据气囊薄膜时空域形变,检测桡动脉血压波形。研制双目视觉脉搏检测系统,其中的气囊传感探头,可将桡动脉血压变化引起的桡动脉搏动,经血管及其周围组织、皮下组织和皮肤,转换为气囊探头薄膜内表面的动态形变和运动;系统中的两台工业相机同步微距检测气囊探头薄膜内表面形变及运动图像(即脉搏图像),捕捉薄膜的变化信息,实现脉搏搏动可视化。基于动态脉搏图像,依据视觉测量原理及薄膜的形变约束和动脉血管的运动约束,结合数字图像处理方法,精确获取薄膜上多点形变幅度;分析其随时间的变化规律,进而提取多点脉搏波;并重构动态脉搏三维形态,获取气囊施压下气囊内表面的时空域形变;对该形变进行时空域分析,获取三维脉象信息等反映血压的本质特征。构建血压模拟平台,同步采集模拟血管形变图像、模拟血管内压力波形、探头内压、探头加载压力等信号;研究分析气囊探头施压下,血管内压力变化至血管壁形变的变换与传递机制。借助神经网络、线性回归、有限元仿真等分析方法,建立了血压测量的数学模型,揭示血压与气囊薄膜时空域形变、探头加载压力、探头内压等信号间的动态联系与规律,实现了桡动脉血压波形的无创测量。该研究对于临床医学和基础医学均具有重要意义,且通过该研究加深了对中医脉诊机理的认识。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
连续视程人工晶状体植入术后残余散光对视觉质量的影响
洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价
从肝脾论治石学敏院士治疗高血压病的临证特点
2000-2019年武夷山亚高山草甸对气候因子的响应及其时滞效应
语言合成中的波形变换编码技术
多源时移地震全波形反演方法研究
基于工具磨损机理及其影响规律探索的气囊抛光工具时变去除特性抑制方法研究
多属性时变体数据可视化