Mesoporous silica nanoparticles (MSNs) are a kind of new drug carrier system, formed through the interaction of inorganic precursor and organic surfactant, with the pore size and spacing in nanoscale (2-50 nm). Mesoporous silica nanomaterials shows great potential applications in biological engineering, but the potential toxicity has limited its applications. The mechanism of MSNs-induced nephrotoxicity has not been fully elucidated. Our previous studies demonstrated that MSNs exerted toxic action on mice tissues (2013,2014), and induced nephrotoxicity through the NF-κB inflammatory signalling pathway (2015, 2016). Recent results also indicated that MSNs could induce oxidative stress and GSK-3β activation in the NRK-52E cells and BALB/c mice, and pretreated with antioxidant or si-RNA-GSK-3β could significantly attenuate the MSNs-induced cell injury. Based on these research fruits, the function of mitochondrial, accumulation of ROS, the level of inflammation and fibrosis in NRK-52E cells and mice kidney will be detected as the biomarkers, which will be used to investigate the interaction between GSK-3β and mPTP protein or NF-κB, and the effects of GSK-3β-/- gene knockout on MSNs-induced nephrotoxicity. In addition, the genetic modification will be used to silence or amplify GSK-3β in NRK-52E cells, and an inhibitor or agonist of GSK-3β will also be used to change the level of GSK-3β. These experiments will be used to illustrate that MSNs induces nephrotoxicity by activating GSK-3β, while inhibiting the activity of GSK-3β can alleviate MSNs-induced oxidative stress, inflammation, fibrosis, and attenuate the nephrotoxicity. The research will clarify the importance and mechanisms of GSK-3β in MSNs-induced kidney injury, and provide a rational basis for seeking antidotes to MSNs-induced nephrotoxicity in clinical application.
介孔二氧化硅纳米粒(MSNs)具有经济方便、载药量大等优势,作为药用载体材料在生物医学工程中有突出的应用前景,然其潜在毒性已成为限制其应用的主要原因。目前MSNs肾毒性机制尚未彻底阐明。在我们前期工作观察到MSNs能引起动物肾组织出现炎症及纤维化等,及近期预实验发现MSNs能诱导肾细胞氧化应激、活化GSK-3β,预先使用抗氧化剂或干扰GSK-3β能提高肾细胞存活率的基础上,本项目拟在体内外,以线粒体、氧化应激、炎症及纤维化为指标,研究GSK-3β与线粒体膜孔蛋白、NF-κB间的相互作用,及GSK-3β敲除后对MSNs肾毒性的影响;并通过干扰或过表达GSK-3β,及将GSK-3β抑制剂或激动剂与MSNs联用,来论证MSNs肾毒性与GSK-3β活化相关,抑制此活化能对抗氧化应激,缓解炎症和纤维化,减轻肾毒性之假说。本项目将深度解析GSK-3β在MSNs肾毒性中的作用机制,为其临床减毒提供依据。
介孔二氧化硅纳米粒(MSNs)具有经济方便、载药量大等优势,作为药物递送系统在生物医学工程中有突出的应用前景,然其潜在毒性已成为限制其临床应用的主要原因。尽管有多项研究报道MSNs可引起肾脏毒性,但是此肾毒性机制尚未彻底阐明。本研究从细胞和动物水平,探讨GSK-3β、FOXO3a、NF-κB信号通路在MSNs所致肾毒性中的作用。结果显示,在肾脏组织与细胞内,MSNs可以抑制SOD、GSH、CAT活性,引起ROS堆积,崩解线粒体电势ΔΨm,促进炎症因子TNF-α、IL-1β、IL-6释放,造成氧化应激损伤、炎症反应,诱导细胞凋亡而降低NRK-52E细胞存活率,引起小鼠肾组织病变。这可能与MSNs激活GSK-3β、抑制FOXO3a相关。活化的GSK-3β可诱导肾脏细胞线粒体膜孔开放,促进线粒体Cyt C漏出并剪切激活Caspase-3,引起细胞凋亡;还可促进NF-κB转位入核,诱导其下游靶蛋白TNF-α、IL-1β、IL-6的表达,增加FN、TGF-β含量,引起炎症反应与纤维化。预先使用抗氧化剂NAC抑制GSK-3β活性或沉默GSK-3β后,均可显著缓解MSNs引起的上述毒性反应。此外,预先使用芹菜素,可提高被MSNs所抑制的FOXO3a活性。芹菜素通过激活FOXO3a,促进其转位入核,既可诱导其下游靶蛋白SOD与CAT表达,还可破坏NF-κB与其相应的DNA位点结合,抑制NF-κB的转录作用。而在沉默FOXO3a后,芹菜素对MSNs所致肾毒性的保护作用被显著减弱。本项目的研究结果从新的角度揭示了MSNs引起肾毒性的分子机制,为临床MSNs肾毒性的防治提供了新的思路与靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
ALR在肾间质纤维化中的作用及机制研究
在致肾间质纤维化中HDAC1调控TGF-β/Smad信号通路活化的作用及机制
系膜细胞在狼疮肾小鼠肾纤维化中的作用及ROS调控机制研究
有机分子修饰的磁性介孔二氧化硅纳米粒子的制备及其在血铀体外净化中的性能研究