We propose to fabricate Bi and Er codoped multi-core fiber for the broadband optical fiber source and amplifier. The bandwidth is from 1100nm to 1620nm, covering O-L bands and including all potential optical fiber communication bands. The problem of low gain,caused by low Bi concentration, is overcomed by the multicore struture. Based on the new active fiber, we will focus on its applications of broadband fiber source and broadband fiber amplifer. The new active fiber based fiber source and amplifier have broad applications in optical fiber communication and could be used in optical sensing area, such as low-coherence optical tomography and low-coherence optical fiber gyroscope. The new active optical fiber is the foundation of the high power laser and ultra-short pulse laser in this bandwidth.
本项目旨在探索Bi/Er共掺多芯石英光纤制备和其光学性质,开展基于其的宽带(1100nm-1620nm,覆盖O-L 波段)光纤光源和光纤放大等的研究。拟在单根光纤内构建多个纤芯,将Bi和Er共掺于多个纤芯内,实现Bi/Er共掺多芯光纤;利用多芯光纤结构解决Bi掺杂光纤无法通过有效增加掺杂浓度而所面临的低单位长度增益等一系列问题;开展基于Bi/Er共掺多芯光纤的宽带光源和宽带放大的研究。高品质的Bi/Er共掺多芯有源光纤,有望实现包括C+L波段和潜在低损耗O+S+E波段光纤光源和光纤放大,推动光纤通讯发展;能够提供廉价的超宽谱光纤光源,在低相干光学层析和低相干光纤陀螺等传感领域应用有着广泛的应用需求;同时为该波段的高功率光纤激光器和超短脉冲光纤激光器奠定坚实基础。
本项目实现了开展具有超宽带(1100nm-1620nm,覆盖O-L 波段)发射的Bi/Er共掺石英光纤制备。重点开展了如下三个方面的工作:1、利用玻璃高效研究方法开展了 Bi、Er等掺杂玻璃及其特性研究,用于指导较为复杂的 Bi、Er 光纤制备;2、开展 Bi、Er 等掺杂光纤制备研究,探索其在宽谱发射、放大和激光相关研究;3、开展了Bi、Er 掺杂光纤中 Bi 相关发光中心的退火特性,为该光纤实用化奠定基础。高品质的Bi/Er共掺有源光纤,有望实现包括C+L波段和潜在低损耗O+S+E波段光纤光源和光纤放大,推动光纤通讯发展;能够提供廉价的超宽谱光纤光源,在低相干光学层析和低相干光纤陀螺等传感领域应用有着广泛的应用需求;同时为该波段的高功率光纤激光器和超短脉冲光纤激光器奠定坚实基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于多模态信息特征融合的犯罪预测算法研究
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
双吸离心泵压力脉动特性数值模拟及试验研究
铌铝共掺拉曼散射增强石英光纤研究
Er/Yb共掺W形光纤及S波段光子器件的研究
多芯长周期光纤光栅制备及其应用研究
掺镱多芯梯度折射率光纤及激光特性研究