Terminal defense is the last barrier of the active protection system. The azimuth precision measurement for ultra-short-range(≤10m) target is the key technology to build the terminal defense system.Due to the limitations of the environment, space and power consumption, currently, traditional methods face difficulties in underwater ultra-short-range azimuth measurement for small moving body. Therefore, the azimuth measurement method for underwater ultra-short-range target requires further study.Based on the preliminary study of ultra-short-range laser circumferential detection technology, this project focus on the basic method of fluids driving azimuth measurement for ultra-short-range target by integrated using laser and magnetic measurement, aims to achieve the azimuth omnidirectional precision measurement for underwater ultra-short-range moving target.This project also proposes methods to build the underwater ultra-short-range moving target detection model, and study the dynamic scanning probe method using single blue-green laser beam which is driven by water power turbine.Based on the integrated application of two theories which are blue-green laser underwater ultra-short-range detection theory and magnetic nearly sense theory, integrated using laser and magnetic measurement to measure target azimuth, and study the fusion and solution methods of laser and magnetic measurement signal.In addition, based on the mechanical, laser and magnetic measurement theory, combined with underwater dynamic detection experiments, this project studies the turbine rotor dynamic imbalance effect mechanism on the measurement accuracy.The results will enrich the theoretical system of underwater ultra-short-range detection, solve the fast and accurate positioning problem for underwater ultra-short-range moving target, and promote the development of active protection technology in terminal defense for China’s weapon system.
末端防御是主动防护体系的最后屏障,超近程(≤10m)目标方位精确测量技术是实现末端防御的关键。由于环境、空间、功耗等方面的限制,目前水下小型运动体难以采用传统测量方法实现超近程方位测量,水下超近程方位测量方法有待深入研究。本课题在前期大气空间激光近程周向探测技术研究基础上,针对水下超近程来袭目标方位全向精确测量问题,开展基于光磁复合原理的流体驱动超近程方位测量方法研究。建立水下超近程运动目标探测模型,利用流体动力驱动激光全向扫描,研究水动力涡轮驱动单束蓝绿激光动态扫描探测方法;融合蓝绿激光水下超近程探测理论和磁近感理论,采用光磁复合方法测量目标方位,研究激光和磁测量信号融合与解算方法;基于机械、光磁测量理论,结合水下动态探测实验,探索涡轮转子动不平衡对测量精度的影响机理。研究成果将丰富水下超近程探测理论体系,解决水下超近程来袭目标快速精确定位问题,推动我国武器系统末端主动防护技术的发展。
针对水下近程目标的探测问题,本项研究提出了一种利用流体动力驱动的水下近程随机定位方法。利用航行水动力驱动单光束脉冲激光动态扫描目标,利用磁传感器记录激光扫描周期信号,基于重尾函数推导了目标回波方程,建立了磁探测系统磁偶极子等效模型,采用峰值检测法和阈值检测法分别解算光磁测量信号。建立了水下近程目标捕获模型和方位探测精度等效模型,研究了激光发射脉冲峰值功率、激光脉宽、信号检测阈值和噪声信号对方位测量精度的影响机理。.基于激光近程探测理论和磁近感理论,提出了光磁复合(L-M)方位测量方法。建立了近程探测脉冲激光信号模型和旋转扫描等效磁荷数学模型,利用Monte Carlo方法结合实际测量实验研究了方位角测量统计分布规律。分析了传感器与磁芯间距、旋转扫描探测周期和信号检测阈值对方位角测量统计分布规律的影响。.建立了激光收发系统电路模型和电流环磁偶极子等效电路模型,分析了光磁信号干扰机理。针对激光回波随机电磁干扰特性,提出一种具有步长记忆效应的变步长最小均方(VSS-LMS)算法,分别针对不同激光回波脉宽、峰值功率和回波时刻三种随机干扰影响因素进行分析,最后利用Monte Carlo(MC)实验方法对比分析方位角测量统计分布规律。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
气载放射性碘采样测量方法研究进展
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于分子发光原理的光弹性涂层测量方法
基于磁光调制的方位信息测量中信号畸变机理分析
基于光机械多探针原理的广域薄膜表面形貌测量方法研究
基于光弹原理的弹流润滑压力测量方法与分析的研究