Photonic crystal has offered a powerful means to mold the flow of light at subwavelength scale, and it has been used in integrated photonic devices. Graphene is an allotrope of carbon. Its structure is one-atom-thick planar sheets of bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene has unique electronic, optical, and mechanical properties. It can be easily integrated with silicon devices and has many potential and important applications in nano-devices. In this project, we will theoretically and experimentally investigate the graphene-based photonic crystals and devices. On the theoretical side, we will build the simulation model of graphene optical properties and develop the finite-difference time-domain and multiple scattering methods. Base on the previous work on silicon photonic crystals, we will study the new phenomena and new functions in graphene-based photonic crystals devices. On the experimental side, we will fabricate high quality silicon photonic crystal structures and investigate the transfer method of graphene. The graphene-based photonic crystals will be studied by the micro-region spectrum measurement system. Combining with the simulation results, the performance of our structure will be discussed. The implementation of.this project will enhance our understanding on new phenomena and new tailoring ways for light interaction with complicated nanostructures, and improve our capability to develop new nanophotonic devices and technologies.
硅基光子晶体可以在微纳尺度上操控光子,形成具有一定功能的集成光学器件。石墨烯具有优异的电学、光学和力学性能,它能够与硅基器件形成互补或集成在一起,使其有望在高性能纳米器件尤其是新型信息器件中有着广泛和重要的应用前景。本项目将在理论和实验两方面开展石墨烯调控的光子晶体及器件的研究。理论方面,我们将建立石墨烯光学性质模型,在以前硅基光子晶体工作的基础上,利用本课题组发展的时域有限差分,多重散射等方法模拟研究石墨烯与光子晶体集成在一起时产生的新现象新功能。实验方面,我们将利用微加工工艺制作高质量的硅基光子晶体结构,探索石墨烯转移方法,将光子晶体与石墨烯集成在一起,利用微区光谱测量系统,研究外加电压对光子晶体的调控功能,并结合理论分析,对所得到的现象进行论证。通过对该项目的研究,将丰富我们对光与复杂结构的相互作用的新现象和新调控手段的认识,促进发展新一代纳米光子器件技术。
石墨烯因其优异的电子输运性质,自被发现以来,成为科学研究的热点。在关于其电子学器件的大量研究之后,研究其光学性质并制造光电子器件成为当前的研究热点,受到了广泛的关注。本项目在以前硅基光子晶体工作的基础上,将石墨烯与光子晶体结合在一起,开展了石墨烯调控的光子晶体及器件的理论和实验研究工作。我们成功将石墨烯转移到光子晶体微腔上,搭建了测量光路,并利用石墨烯饱和吸收特性调节了光子晶体微腔的共振峰与Q值,实现了微腔的全光调控。此外,还理论研究了石墨烯的吸收调节和增强效应和石墨烯表面等离体波在弯曲表面的传输特性。通过对该项目的研究,丰富了我们对光与复杂结构的相互作用的新现象和新调控手段的认识,促进发展新一代纳米光子器件技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
感应不均匀介质的琼斯矩阵
基于混合优化方法的大口径主镜设计
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
连续视程人工晶状体植入术后残余散光对视觉质量的影响
X射线晶体结构解析技术在高分子表征研究中的应用
硅基光子晶体波导器件制备研究
全禁带硅基复周期光子晶体新型制备技术及器件研究
硅基微纳光子器件及集成
基于光子晶体异构微腔的硅基电致发光器件基础研究