With the development of nuclear electricity, the shortage of uranium resources and the damage of uranium-containing wastewater are becoming increasingly important, and therefore the sorption of uranium from water by an efficient and economic way is of scientific and realistic significance. Ordered mesoporous carbon(OMC) has potential values in uranium adsorption due to the advantages of opened architecture, uniform pores, ordered arrangement, adjustable dimension, large specific surface area and pore volume. In this project, the OMC was directively functionalized at the internal and external surfaces by the techniques of surface oxidation, in situ phosphorylation, vapour-phase transfer sulfonation and amino grafting in order to overcome the vase neck of low adsorption capacity, slow adsorption rate and poor selectivity. The effect of functionalization conditions, such as the dosage of components, reaction temperture and time, on the adsorption properties, microstructures and surface and physicochemical properties was studied, and then the relationship between structures and sorption properties was explored. The sorption mechanism of uranium on the functionalized ordered mesoporous carbon(FOMC) was also confirmed by means of FT-IR, XPS and speciation analysis, combined with sorption dynamic modle. Additionally, application research of processing uranium-containing wastewater by the FOMC was investigated. The project will provide the fundamental and scientific basis for OMC being a new type uranium sorption material.
随着核电的发展,铀资源的短缺和含铀废水的危害日益凸显。因此,以经济高效的方式吸附水体中的铀具有重要的科学和现实意义。有序介孔碳具有开放的框架结构,孔径均一,排列规则,尺寸可调,比表面积和孔容大等优点,在吸附方面具有潜在的应用价值。本项目旨在通过表面氧化、原位磷酸化、气相转换磺化和氨基接枝等技术,对介孔碳的内外表面实现指向性羧基、磷酸基、磺酸基和氨基功能化,拟突破铀吸附容量低和选择性差等瓶颈。研究介孔碳的功能化参数对吸附性能、微观结构和表面物理化学性质的影响,进而探讨介孔碳吸附铀的构性关系;通过FT-IR、XPS和形态分析等技术手段,结合吸附动力学模型,揭示功能化介孔碳吸附铀的作用机理;并开展功能化介孔碳处理放射性废水的应用研究。本项目的完成将为介孔碳用作新型铀吸附材料提供理论基础和科学依据。
有序介孔碳具有孔径在2~50 nm之间连续可调、丰富的孔结构及良好的稳定性等优点,广泛的应用于生物分子、染料及气体等的吸附,但由于表面功能基团的种类和含量较少,制约了其在核素吸附方面的应用。本项目制备了羧基化有序介孔碳(CMK-3-COOH)、磷酸化有序介孔碳(CMK-3-PO4)、氨基化有序介孔碳(CMK-3-NH2)和磺酸化有序介孔碳(CMK-3-SO3H),拟突破有序介孔碳对铀(VI)的吸附容量小和选择性差等瓶颈。.采用浓硝酸气固转换羧基化法、原位磷酸化法、硝基还原法和发烟硫酸气固转换磺酸化制备羧基化有序介孔碳(CMK-3-COOH)、磷酸基有序介孔碳(CMK-3-PO4)、胺基有序介孔碳(CMK-3-NH2)和磺酸基有序介孔碳(CMK-3-SO3H)。TEM、SAXRD和N2-BET表明羧基化、磷酸化、胺基化和磺酸化过程未破坏CMK-3的有序介孔结构;Bohem滴定和FT-IR结果表明含氧基团含量由0.522.18 mmol·g-1(CMK-3)增至2.18 mmol·g-1(CMK-3-COOH)、2.37 mmol·g-1(CMK-3-PO4)、1.25 mmol·g-1(CMK-3-NH2)和1.09 mmol·g-1(CMK-3-SO3H)。四种功能化有序介孔碳吸附铀(VI)的行为符合准二级动力学模型和Langmuir等温式,即吸附主要是受化学作用控制的,单分子层饱和吸附容量由133.4 mg·g-1(CMK-3)提高至233.5 mg·g-1(CMK-3-COOH)、485.4 mg·g-1(CMK-3-PO4)、414.9 mg g-1(CMK-3-NH2)和186.2 mg·g-1(CMK-3-SO3H)。当Cu(II)、Hg(II)、Mg(II)、Mn(II)、Ni(II)、Sr(II)、Zn(II)和U(VI)等离子共存时,相对于CMK-3,功能化有序介孔碳对U(VI)吸附的选择性显著增强。分别以1.0 mol·L-1HCl溶液、1.0 mol·L-1HCl溶液、0.1 mol·L-1EDTA溶液和1.0 mol·L-1H2SO4溶液作为洗脱剂,CMK-3-COOH、CMK-3-PO4、CMK-3-NH2和CMK-3-SO3H上铀的洗脱率达到93.1%、99.0%、99.3%和98.5%。该项目研究成果将为铀分离富集提供理论基础和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
有序介孔碳的互穿功能化及吸附铀的性能研究
功能化介孔炭微球吸附铀的性能及机理研究
功能化有序介孔碳材料的制备及其对石化废水中典型POPs的选择性吸附
新型有序大孔SiO2连续吸附分离TBP和铀的性能及机理研究