Due to the typical features of the packaging equipment with high speed, high acceleration, moving forward and backward with high frequency, high positioning accuracy and precision operation, its manufacturing technology was faced the key challenges in the aspects of vibration reduction, precision positioning in macro-micro motion, and high response collaborative control for multi-axis motion. Considering these problems, this project focuses on the reduction rule of the vibration energy and proposes a PZT-based novel approach to rapidly reduce or transform the vibration energy caused by the motion with high acceleration and deceleration. With the control of the output moment and extending value of the PZT driver, the vibration absorbing model is established to reduce the residual vibration and realizes a rapid reduction on the vibration energy of the motion system. This project also investigates the vibration transmitting rule of the macro-motion to the micro-motion and finds the coupled interference the XY axis motion. Based on the switching condition of the macro-micro motion and the new principle of high positioning precision creation through the PZT driving system, this project builds a micro-driving model to compensate both the residual vibration and the position tracking error in real time and can realise a fast settling and accurate positioning to the stage. On the other hand, this project also focuses the high response collaborative control method for the multi-axis motion with high dynamic feature and proposes an active disturbance rejection control algorithm based force control method to improve the operation accuracy of the bonding process. In order to achieve a precision force operation for the high speed bonding process, this project establishes a multi-info fused dynamic position/force prediction model for the switching operation of the bonding head. Based on our previous research foundation and achievement, and taking the advantages of the key contents, novel methods and feasible schema of the project, we believe that this project will certainly achieve an important progress on the key technology of high-performance packaging equipment manufacturing, and will provide a strong support for improvement of our country’s manufacturing ability on the high-density, high-performance packaging equipment.
封装装备高速高加速度、往复频繁启停、精密定位及精准操作的典型特征,使新一代高性能装备在振动抑制、跨尺度精密定位、高响应协同控制等环节面临着关键技术挑战。项目针对这类装备制造中的难题,深入研究高加减速运动过程振动能量衰减规律,提出基于压电陶瓷的振动能量转移方法,建立有效控制压电驱动减振输出时机与量值的吸振模型,实现运动系统振动能量的快速衰减;研究跨尺度宏微运动残余振动传递规律及其交叉耦合干扰,探索宏微两级切换条件与微驱动系统的精度生成新原理, 提出具有实时残余振动和位置跟踪误差双重自补偿功能的微驱动模型,实现平台的快速稳定与精密定位;研究焊头高动态工况下多轴运动高响应协同控制方法,提出基于自抗扰控制算法的焊头机构精准力控制方法,实现焊头的精准操作。该项目有良好的前期研究基础,提出的研究内容关键、方法创新、方案可行,有望取得该领域关键技术的重要进展,为我国高密度封装高端装备制造提供有力的支撑。
封装装备高速高加速度、往复频繁启停、精密定位及精准操作的典型特征,使新一代高性能装备在振动抑制、跨尺度精密定位、精准协同操作等环节面临着关键技术挑战。项目针对这类装备制造难题,重点研究封装装备高加减速运动过程的振动能量快速衰减/转移机制、高动态工况跨尺度宏微运动的切换模型与双重自补偿微驱动的精度生成新原理、多轴运动系统高响应协同控制方法、和基于自抗扰控制算法的焊头机构精准操作等内容。. 通过深入的理论研究与技术创新,建立了高速急停运动过程中系统惯性振动能量的快速衰减/转移机制,提出了基于压电陶瓷精准作用的主动减振方法,明确了压电模型精准作用时机,实现了运动系统振动能量的快速衰减;提出了宏微运动切换模型与双重自补偿微驱动的精度生成新原理,建立了振动和位置跟踪误差双重自补偿功能的微驱动模型,缩短了平台稳定时间,并实现了跨尺度运动平台的纳米级精度定位,可实现8g加速度、40mm行程下的43nm定位精度,稳定时间仅50ms;研究了多轴运动系统高响应协同控制方法,提出了XY轴解耦控制、力矩前馈补偿控制和多轴协同控制算法,验证了方法有效性;研究了高动态工况下焊头机构的精准操作问题,提出了基于振动能量的焊头动态精准切换方法,焊头搜索时间减小达39.2%,提出了基于Kalman滤波器与扩张状态观测器(ESO)相结合的焊头双重扰动抑制方法,有效提高了焊头机构键合操作的干扰抑制能力。. 项目在跨尺度宏微运动平台及焊头精准操作上取得了重要进展,提高了精密运动平台的定位精度和定位效率,提高了焊线机焊头操作的精度、效率和抗扰稳定性能,为我国高密度封装高端装备的制造提供有力的理论与技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
基于图卷积网络的归纳式微博谣言检测新方法
多源数据驱动CNN-GRU模型的公交客流量分类预测
面向封装装备的三轴跨尺度宏微运动平台振动抑制与误差动态补偿机制
爆破振动主频衰减机制和衰减规律研究
重载大惯量装备快速高精度稳定控制策略与实验研究
动力电池性能衰减机理及复杂车载工况下的等效寿命预测模型研究