This project studies the geometry and analysis of pseudoharmonic maps, p-pseudoharmonic maps and their heat flow to understand horizontal bundles and pseudo-Hermitian structures on pseudo-Hermitian manifolds. More precisely, the group transformation of Heisenberg group will be used to investigate the blow-up phenomena and the long-time existence of pseudoharmonic maps; and then the Eells-Sampson type theorem for pseudoharmonic maps will be established in more general case. The relations between p-pseudoharmonic maps and p-harmonic maps will be investigated in terms of various CR Bochner formulas. This project will also consider the long-time existence and the asymptotic behavior of p-pseudoharmonic maps. The existence theorem for p-pseudoharmonic maps will be obtained in the general case.
本项目主要研究拟调和映射、p-拟调和映射及它们热流的几何与分析性质,以此来理解pseudo-Hermitian流形上的水平丛和pseudo-Hermitian结构。本项目将利用Heisenberg群的群变换来研究拟调和热流的blow-up现象与解的长时间存在性,以期得到更广的Eells-Sampson型拟调和映射存在性定理。本项目将通过计算和估计各种CR Bochner公式来研究p-拟调和映射与p-调和映射之间的关系。在此基础上,本项目还将研究p-拟调和热流解的长时间存在性及无穷远处的渐近行为,以期得到在一般情形p-拟调和映射的存在性。
拟Hermitian几何与次黎曼几何、切触几何、Hermitian几何等等有着密切的联系。拟调和映射是水平能量泛函的临界点。项目利用拟调和热流的方法得到了拟调和映射的Eells-Sampson型存在性结果和Hartman型唯一性结果。项目还研究了拟Hermitian流形上的sub-Laplacian比较定理,并建立从完备非紧拟Hermitian流形到具有正曲率黎曼流形的拟调和映射的一类存在性。项目还研究了拟Einstein结构,推导了无迹的拟Hermitian Ricci曲率张量和Chern-Moser张量的Bochner公式,并给出了Sasakian 拟Einstein流形具有一定的刚性。
{{i.achievement_title}}
数据更新时间:2023-05-31
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
精子相关抗原 6 基因以非 P53 依赖方式促进 TRAIL 诱导的骨髓增生异常综合征 细胞凋亡
MiR-516a-5p inhibits the proliferation of non-small cell lung cancer by targeting HIST3H2A
长链非编码RNA SFTA1P在肺腺癌中的表达及预后预测研究
不同初始虫口密度赤拟谷盗成虫危害对小麦粉挥发性物质的影响研究
复Finsler流形上的调和积分及调和映射
调和映射热流中的若干问题
拟共形映射、Teichmuller空间与调和映射
关于调和映射和拟正则映射性质的研究