双曲流形的体积与形变

基本信息
批准号:11226096
项目类别:数学天元基金项目
资助金额:3.00
负责人:符曦
学科分类:
依托单位:绍兴文理学院
批准年份:2012
结题年份:2013
起止时间:2013-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:
关键词:
Klein形变体积代数收敛双曲流形
结项摘要

The hyperbolic manifold is an important research subject in complex analysis. Recently, there are a series of results on its classification, local structures and topological properties. Based on the known work, we will mainly discuss the volumes and deformations of hyperbolic manifolds, the detailed research contents are as follows: (1) discussing the properties of hyperbolic isometries and giving a lower bound on the radiuses of hyperbolic balls embedded in complex hyperbolic manifolds; (2) studying the discreteness of convergence groups and completing the discussion on the convergence of negatively curved groups acting on higher dimensional hyperbolic manifolds and Hadamard manifolds. The research of this project has great theory significance in strengthening the relationship between real and complex hyperbolic manifolds and Kleinian groups.

双曲流形是复分析领域中的一个重要研究课题。近年来,关于它的分类、局部结构以及拓扑性质已有一系列的研究成果。基于前人的工作,我们将主要围绕双曲流形的体积及其形变展开研究,具体内容如下:(1) 讨论双曲等距映射的性质,给出复双曲流形的内嵌球一致半径的下界;(2) 研究收敛群的离散性,进一步完善高维双曲流形、Hadamard流形上的负曲率等距群收敛性的讨论。本项目的研究加强了实、复双曲流形与Klein群的联系,具有重要的理论意义。

项目摘要

本项目主要研究双曲流形的体积与形变问题。目前,已基本完成该项目制定的研究计划, 在双曲流形、Hadamard流形的体积与形变以及Mobius群的离散性等方面取得了一些研究成果。具体如下:.(1)利用复双曲等距群中双曲元素的性质,给出了复Fuchs群的特征;.(2)建立了Mobius群、复双曲等距子群的几个离散性准则和代数收敛性定理;.(3)研究了复双曲群中椭圆元素的collar结构,给出了复双曲分支流形体积的一个估计。.(4)得到了几个无穷维离散Mobius子群中的几个不等式。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

路基土水分传感器室内标定方法与影响因素分析

路基土水分传感器室内标定方法与影响因素分析

DOI:10.14188/j.1671-8844.2019-03-007
发表时间:2019
2

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018
3

双吸离心泵压力脉动特性数值模拟及试验研究

双吸离心泵压力脉动特性数值模拟及试验研究

DOI:10.13465/j.cnki.jvs.2020.19.016
发表时间:2020
4

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

DOI:10.6052/1672⁃6553⁃2017⁃059
发表时间:2018
5

抗生素在肿瘤发生发展及免疫治疗中的作用

抗生素在肿瘤发生发展及免疫治疗中的作用

DOI:10.3760/cma.j.cn371439-20200423-00009
发表时间:2021

符曦的其他基金

批准号:11501374
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目

相似国自然基金

1

三维流形上的Anosov流与双曲块

批准号:11471248
批准年份:2014
负责人:余斌
学科分类:A0111
资助金额:62.00
项目类别:面上项目
2

三维流形上的双曲几何

批准号:11371094
批准年份:2013
负责人:马继明
学科分类:A0111
资助金额:50.00
项目类别:面上项目
3

复双曲Klein群的基本域与无穷处的流形

批准号:11871202
批准年份:2018
负责人:谢宝华
学科分类:A0201
资助金额:50.00
项目类别:面上项目
4

流形极小体积与Gromov体积关系的研究

批准号:11126046
批准年份:2011
负责人:徐海峰
学科分类:A0108
资助金额:3.00
项目类别:数学天元基金项目