In recent years, extreme adverse weathers such as typhoon and ice rain occur frequently in China, which have activated the imperative study on disaster-relief dispatch in power systems based on quantitative analysis methods..The project devotes to the coordinated optimization of multiple dispatch and control measures for the operational risk control purpose and construction of a collaborative dispatch mechanism with different time scale under extreme adverse weather conditions. The project will cover the following aspects: 1) A synthesis operational reliability evaluation method for transmission equipments based on a logical and physical complementary model is proposed and the ELM on-line study technique is introduced for the logical modeling; 2) Two types of stochastic programming problems are studied, the stochastic unit commitment (SUC) and stochastic optimal transmission switching (SOTS), both of which will consider the security risk constraints and load forecast errors (uncertainty). The scenario-tree decomposition algorithm for the SUC and SOTS problems and dimension reduction strategy of the security risk constraints will be elaborately explored; 3) A risk-share coordinated bi-level optimization model of preventive and emergency control is proposed and a hierarchical decomposition algorithms is developed to solve the problem. A coordinated design approach of under-frequency load shedding with both the frequency deviation scheme and the variation rates of frequency scheme integrated is developed, with risk of different operating scenarios taken into account. The application of the asynchronous distributed computing technique is explored to speed up the computation efficiency of both methods above..The project implementation is expected to improve the emergency management in power systems under extreme adverse weather conditions, reduce the power system security operation risk resulted from the adverse weather and consolidate the power system blackout defense system.
近年来,台风、冻雨等极端气象灾害在国内的频繁发生使基于定量分析的防灾调度研究变得非常紧迫。本项目致力于从运行风险控制的角度实现多种调控手段的协调优化,力求建立灾害条件下的多时间尺度协同优化调度机制。主要研究内容为:提出基于逻辑-物理互补模型的输电设备运行可靠性综合评估方法,综合考虑多种影响因素,同时探索ELM快速在线学习技术用于气象-设备逻辑建模;分析考虑安全风险约束和负荷预测误差的随机机组组合优化模型和随机最优输电网切换模型,研究基于场景树的分解算法和安全风险约束降维策略;研究风险共享的预防控制和紧急控制协调双层优化模型及其分层分解算法,研究考虑场景概率的电力系统低频减载主/辅控制协调设计方法,探索异步分布式技术在其中的应用。此项目的研究成果有助于提高极端气象灾害条件下的电力系统应急管理水平,降低气象灾害给电力系统安全运行带来的风险,健全电力系统停电防御体系。
近年来,台风、冻雨等极端气象灾害在国内的频繁发生使基于定量分析的防灾调度研究变得非常紧迫。本项目致力于从运行风险控制的角度实现多种调控手段的协调优化,力求建立灾害条件下的多时间尺度协同优化调度机制。主要研究内容包括:1)基于输电设备运行可靠性综合评估模型,研究极端灾害下的大停电风险紧急控制方法;2)研究风险共享的预防控制和紧急控制协调双层优化方法;3)考虑新能源不确定性的系统协调优化调度研究。. 本项目的重要研究成果包括:1)建立台风气象条件下的输电设备运行可靠性模型,提出了一种台风天气条件下基于电网紧急控制的最优风险防控模型,考虑暂稳及故障后线路安全约束;2)针对灾害背景下的电力系统运行风险防控问题,提出一种全新的“预防-紧急“风险共享双层优化控制模型,通过引入协调参数的概念,可得到整个协调控制“全景图”,部分成果针对实际电网进行了验证;3)针对含风电电力系统备用调度问题,在概率分布函数空间提出新能源发电不确定性的刻画方法,在此基础上建立了基于风险的风电消纳备用随机鲁棒优化模型,考虑多种备用协调优化;4)开发了一套电力系统智能计算平台,可用于大电网紧急控制方案设计。通过项目研究,极端气象灾害条件下的电力系统防灾调度问题得到系统深入探索,协调控制的核心思想有助于降低气象灾害给电力系统安全运行带来风险,电力系统停电防御成本可得到全局优化。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
电力系统在线运行风险评估与优化调度研究
运行模式在电力系统优化调度中的应用
电-气综合能源系统优化运行与风险调度方法
电力系统运行调度中刚性优化与柔性决策理论研究