Chinese research team of the function theory of several complex variables is several generations of research groups in several complex variables represented by Loo-keng Hua, Qizheng Lu, Sheng Gong, Tongde Zhong, Xiangyu Zhou, Qi'an Guan, etc.. Since the 1950s, it was founded by Loo-keng Hua, a famous mathematician in China, its research results have great influence at home and abroad, and it has been active in the international research stage. In the study of the branch of mathematics called the function theory of several complex variables, it has formed distinct Chinese characteristics and occupied an important position in the world. It has been called " Loo-keng Hua school" or "Chinese several complex variables school" in the field of the function theory of several complex variables by many famous mathematicians, history of mathematics and disseminators of mathematical culture.. In view of this, this project aims to deeply consult the historical literature of " Chinese several complex variables school ", interview the academic representatives of the older generation, and further systematically organize the academic and educational thoughts of " Chinese several complex variables school " by virtue of the youth exchange platform, so as to spread the mathematical culture and tell the "Chinese story" well.
中国多复变函数论研究队伍是以华罗庚、陆启铿、龚昇、钟同德、周向宇、关启安等为代表的几代多复变函数论研究群体,自20世纪50年代由我国著名数学家华罗庚先生创建以来,其研究成果在国内外产生了较大影响,一直活跃在国际研究舞台.在多复变函数论这一数学分支的研究上,已形成鲜明的中国特色,在国际上占有重要地位,被众多知名数学家、数学史与数学文化传播者称为多复变函数论领域“华罗庚学派”或“中国多复变学派”.. 鉴于此,本项目旨在深入查阅“中国多复变学派”的历史文献,访谈老一代学术代表,借助青年交流平台,进一步较为系统梳理“中国多复变学派”学术与教育思想,以期传播数学文化,讲好“中国故事”.
中国多复变函数论研究队伍是以华罗庚、陆启铿、龚昇、钟同德、周向宇、关启安等为代表的几代多复变函数论研究群体,自20世纪50年代由我国著名数学家华罗庚先生创建以来,其研究成果在国内外产生了较大影响,一直活跃在国际研究舞台.在多复变函数论这一数学分支的研究上,已形成鲜明的中国特色,在国际上占有重要地位,被众多知名数学家、数学史与数学文化传播者称为多复变函数论领域“华罗庚学派”或“中国多复变学派”。.本项目通过深入查阅“中国多复变学派”的历史文献,进一步较为系统地梳理了“中国多复变学派”学术与教育思想,介绍了中国多复变学派主要代表人物、中国多复变学派团队情况以及中国多复变研究基地情况,整理了近10年来全国多复变学术年会及其他学术会议资料,搜集整理了中国多复变学派代表人物的生平相关文献18篇,多复变学派学术思想相关文章20篇,多复变学派教育思想代表文献20篇,以及多复变学派代表发表的学术文献、出版的代表著作等,形成了“中国多复变学派”学术与教育思想的资料集,并已通过各类网络信息平台传播,进一步弘扬了数学文化,普及了数学历史。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
Equivariant CR minimal immersions from S^3 into CP^n
拥堵路网交通流均衡分配模型
基于全模式全聚焦方法的裂纹超声成像定量检测
采煤工作面"爆注"一体化防突理论与技术
陈建功的数学教育思想与传播
中国古代教育建筑设计思想与实践研究
单复变与多复变函数值分布论
多复变与复几何前沿问题研究