玻色-爱因斯坦凝聚中的非线性元激发研究

基本信息
批准号:19975019
项目类别:面上项目
资助金额:8.50
负责人:黄国翔
学科分类:
依托单位:华东师范大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:杨宝成,邓乐,刘素娟
关键词:
非线性元激发玻色爱因斯坦凝
结项摘要

By a detailed analysis for the interatomic interaction in trapping Bose-Einstein condensates (BECs), the property of nonlinear excitations in the BECs is explored in a very general way . A singular perturbation method for inhomogeneous and nonlinear systems is developed and a quasi-one-dimensional (1D) and quasi 2D descriptions of soliton dynamics in BECS are provided. The colliding phase-shifts of 1D dark solitons is shown to be positive. It is found that a lump (a type of localized 2D nonlinear excitation) disintegrates into two vortices when moving into the boundary of BEC . The vortices move in opposite directions along the boundary and merge again into a new lump. A general theoretical method of studying the ground state, linear and nonlinear excitations of low-dimensional BECs is constructed. It is shown that, for a condensate strongly confined in two transverse directions, the ground state of the system involves the high-order eigen-modes of the transverse confining potential in the transverse directions and effective high-order Thomas-Fermi wave functions in the axial direction. A analytical formula for dark soliton radiation and a criterion for dark soliton disintegration are given. An improved saddle-point approximation method is provided which can be used to study the critical temperature of BEC transition, fraction of condensate, fluctuations of condensate, and the effect of finite size and atomic interaction. A new mechanism for decoherence due to condensate fluctuations is proposed. The second harmonic generation of collective modes in a two-component BEC is investigated. It is found that the scattering length of different components can be measured indirectly by using the conversion efficiency of the second harmonic generation. The research on coherent evolution of the BEC in a magnetic trap and an optical lattice potential agrees well with the experimental results by the Pisa group (Italy), leading by Professor E. Arimondo. The research results obtained in this project is significant not only for the basic study of inhomogeneous boson systems but also for revealing new macroscopic quantum phenomenon , like atom laser. There are 14 papers publised in respectively Physical Review (6), Journal of Physics (5) and other international journals (3). The results are cited many times by colleagues home and abroad. The principal investigator of the project has been invited to give two talks in an internatial and a domestic academic conferences.

(1)发展非均匀非线性体系的奇异摄动方法,系统研究碱金属中性原子玻色-爱因斯坦凝聚体中的非线性元激发的产生,传播和相互作用;(2)研究陷阱中元激发的模耦合,谐波产狄萍坝邢尬露刃вΓ唬?)研究多组分凝聚体的非线性干涉。本项目不仅对非均匀玻色气体的基础理论研究,而且对揭示新的宏观量子现象及其应用(如原子激发等)均有重要意义。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

转录组与代谢联合解析红花槭叶片中青素苷变化机制

转录组与代谢联合解析红花槭叶片中青素苷变化机制

DOI:
发表时间:
2

补充投喂β-胡萝卜素对不同色系三角帆蚌内壳色、组织总类胡萝卜素含量及生长的影响

补充投喂β-胡萝卜素对不同色系三角帆蚌内壳色、组织总类胡萝卜素含量及生长的影响

DOI:10.12131/20200075
发表时间:2020
3

三氯化硼离子C~2A_2''态光电子谱的理论研究

三氯化硼离子C~2A_2''态光电子谱的理论研究

DOI:10.3969/j.issn.1007-5461.2021.05.014
发表时间:2021
4

Ordinal space projection learning via neighbor classes representation

Ordinal space projection learning via neighbor classes representation

DOI:https://doi.org/10.1016/j.cviu.2018.06.003
发表时间:2018
5

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

DOI:
发表时间:2021

黄国翔的其他基金

批准号:11474099
批准年份:2014
资助金额:79.00
项目类别:面上项目
批准号:10674046
批准年份:2006
资助金额:30.00
项目类别:面上项目
批准号:10874043
批准年份:2008
资助金额:34.00
项目类别:面上项目
批准号:90403008
批准年份:2004
资助金额:25.00
项目类别:重大研究计划
批准号:10274021
批准年份:2002
资助金额:21.00
项目类别:面上项目
批准号:19304004
批准年份:1993
资助金额:4.00
项目类别:青年科学基金项目
批准号:11174080
批准年份:2011
资助金额:65.00
项目类别:面上项目

相似国自然基金

1

玻色-爱因斯坦凝聚中的驻波

批准号:10726033
批准年份:2007
负责人:陈光淦
学科分类:A0110
资助金额:3.00
项目类别:数学天元基金项目
2

玻色-爱因斯坦凝聚中Majorana跃迁研究

批准号:10574005
批准年份:2005
负责人:周小计
学科分类:A2104
资助金额:34.00
项目类别:面上项目
3

玻色-爱因斯坦凝聚中集体激发的Landau阻尼和频移

批准号:10864006
批准年份:2008
负责人:马晓栋
学科分类:A2003
资助金额:25.00
项目类别:地区科学基金项目
4

玻色-爱因斯坦凝聚中的孤子问题的研究

批准号:10375022
批准年份:2003
负责人:颜家壬
学科分类:A2501
资助金额:24.00
项目类别:面上项目