Rhamnolipids are one of the best known biosurfactants and are usually produced as multicomponent mixtures of homologues. Be aimed at the problem that triclosan (TCS) is so easily adsorbed onto sediments and is hardly degraded by anaerobic microbe in natural water bodies, rhamnolipidic homologues are applied to promote the migration of TCS toward aqueous phase and enhance its aerobic microbial biodegradation in natural water bodies. In this study, several rhamnolipidic homologues are firstly separated and their molecular structures and micellization properties are characterized.A simulated completely mixed system and a mixable displacement sediment column system are developed to investigate the interaction between the TCS and rhamnolipidic homologues under different environmental conditions,including the micellar solubilization, sorption/desorption behaviour of TCS between water and sediment , efficiency and pathway of the enhanced native microbial biodegradation of TCS in water/sediment system. In additon,the factors that affect the TCS bioavailability by the rhamnolipidic homologue are also studied. Based on these, the enhanced migration and degradation characteristic of the TCS in water/sediment system by the rhamnolipidic homologues can be clarified and the regulation strategy can be obtained. This work will provide useful information for biosurfactants enhanced bioremediation of PPCPs. It also enriches the research content of in situ bioremediation theory and technology involving using biosurfactants for restoration of polluted water bodies .
针对自然水体中三氯生(TCS)易吸附于底泥而不易被厌氧微生物降解的问题,提出采用鼠李糖脂同系物调控TCS在水/底泥中的分配,使TCS从底泥向水相定向迁移,从而强化其在自然水体中的好氧微生物降解。本研究从鼠李糖脂同系物表面活性差异性出发,建立完全混合体系和易置换模拟底泥柱体系,采用吸附/脱附和土著微生物降解实验,重点研究不同环境介质及条件下,各鼠李糖脂同系物与TCS的相互作用机制,各鼠李糖脂同系物对TCS在水/底泥中的分配与迁移影响效应;探明各鼠李糖脂同系物作用下,水/底泥中好氧土著微生物降解TCS途径与效率,解释鼠李糖脂对TCS生物有效性的影响效应;在此基础上,揭示鼠李糖脂作用下TCS在水/底泥中的迁移转化规律,进而提出特定鼠李糖脂同系物作用下TCS在水/底泥中受控定向迁移与强化生物降解的调控策略,推动受PPCPs污染水体的生物表面活性剂强化原位生态修复基础理论及技术的发展。
针对自然水体中三氯生(TCS)易吸附于底泥而不易被微生物降解,本研究提出采用鼠李糖脂(RL)调控TCS在水/底泥相分配,使TCS从底泥向水相定向迁移,以强化其在自然水体中的好氧微生物降解。采用完全混合体系增溶/吸附/脱附和生物降解实验,研究了表面活性剂对TCS在水/底泥相的分配迁移影响规律,探明了RL对水/底泥中土著好氧微生物降解TCS的影响效应,揭示了RL作用下TCS在水/底泥中的迁移转化规律,提出了受控定向迁移与强化生物降解调控策略。结果表明,不同表面活性剂作用下,Brij 35对TCS的强化吸附效果最好,RL在低浓度下可强化TCS的吸附,高浓度下有利于TCS的脱附,Tween 80有利于污染底泥上TCS的脱附。RL同系物中,双RL胶束对TCS的增溶能力最强,而自身在底泥中的吸附量最低,因而其促进TCS水相分配的能力最强,对污染底泥中TCS的解吸率最大。RL浓度越大、泥水比越低、作用时间越长、TCS初始浓度越低,越有利于RL脱附污染底泥中的TCS,最佳环境条件为,反应时间30 h、RL浓度2996.96 mg/L、泥水比10 g/L、pH 7.95,此时RL对污染底泥中TCS的解吸率高达90.7%。好氧河水/底泥中,RL可以强化TCS的生物降解,而Tween 80和Brij 35则抑制TCS的生物降解。RL同系物中,双RL强化TCS的好氧生物降解作用最强,其降解率高达93.87%。以有效性和经济性为考量,河水/底泥中RL强化TCS好氧降解的适宜条件为,RL浓度范围0.125-0.5 g/L ,TCS初始浓度范围低于 90 μg/g,弱碱性环境(pH范围8-9之间),较高温度(20-35 ºC),中等离子强度(0.001-0.1 mol/L 范围内的NaCl 添加)和适当水动力扰动。高浓度(60 μg/g)TCS可显著降低了河水/底泥混合体系中土著微生物种群结构的丰富度和多样性,改变了复杂微生物种群结构组成和分布比例,而RL可以改变TCS降解主导微生物组成分布比例,添加RL的河水/底泥混合体系中α-变形菌纲微生物的丰度较高,而Sphingobacteria纲、β-变形菌纲和δ-变形菌纲微生物的丰度较低。本研究构建的RL强化修复技术是有效的,为RL强化修复TCS污染水体/底泥中的应用提供理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
氯盐环境下钢筋混凝土梁的黏结试验研究
污泥堆肥过程中三氯生的降解转化规律及其环境风险研究
鼠李糖脂的脂质体研究
14C示踪法研究微塑料对土壤中三氯生归趋和生物有效性的影响及机制
鼠李糖脂降低酚类物质对堆肥中功能微生物的毒性的作用机制研究