广义Norm和可解融合系

基本信息
批准号:11301532
项目类别:青年科学基金项目
资助金额:22.00
负责人:申振才
学科分类:
依托单位:中国农业大学
批准年份:2013
结题年份:2016
起止时间:2014-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:熊欢,于浩然
关键词:
饱和融合系广义Norm可解群可解融合系
结项摘要

On the one hand ,we will give the system thoery of generelized Norm. 1. We will give the generation Theorem and the equivalent conditions of D-groups and S-groups and solve two conjectures which are posed by the referees of our two papers having published in Journal of Algebra. 2. By the definition of the center series of nilpotency class of nilpotent group,we give the concepts of D-length of a group G with G' nilpotent and S-length of a meta-nilpotent group. In order to investigate the structure of D-groups and S-groups, we will give the classification of minimal non-D-group and minimal non-S-groups, in fact, they are interesting independently. We will give the new concepts of the Norms of the general F-residuals of subgroups; for example, let F be a saturated fomation containing all nilpotent fomation or all supersolvable fomation. 3. By the suggestion of Prof. Jiping Zhang(For the concepts of a few generalized Norms being given by us, ones can only consider some respresentation subgroups and need not consider all subgroups), we can give the concepts of the more and new generalized Norms. On the other hand,for Fusion System. First, we investigate Zhang Jiping's visualizer (decide when the results from solvable group theory will hold for the theory of fusion system). Second, we investigate Solomen and Stancu' conjecture (Is there a weakly normal subsystem over every strongly closed subgroup of a saturated fusion system).

一、拟给出广义Norm的系统理论。1.给出D-群和S-群的生成定理和等价条件以及解决申请人近期发表在Journal of Algebra上两篇文章中审稿人提出的两个猜想。2.根据幂零群的幂零类的上中心链定义提出导子群幂零的群的D-长、亚幂零群的S-长的概念;为了更好的研究D-群和S-群的结构,给出极小非D-群和S-群的分类,事实上它们也有独立的意义;给出子群的F-剩余的Norm的新概念,例如考虑F是包含幂零群系和超可解群系的饱和群系。3.根据张继平教授的建议(对于我们提出的几类广义Norm的概念不需要考虑所有的子群,只需要找出有代表的某类子群)能够给出更多新的广义Norm的概念。二、关于融合系,首先是对张继平教授提出的构想(根据可解群的理论给出可解融合系的系统理论)进行研究;然后对Solomon和Stancu猜想(是否饱和融合系的每个强闭子群上存在一个弱正规子系)进行研究。

项目摘要

一、给出了广义Norm的系统理论;1、给出了D-群和S-群的生成定理和等价条件以及解决了申请.人近期发表在Journal of Algebra上两篇文章中审稿人提出的一个猜想。2、根据幂零群的.幂零类的上中心链定义提出导子群幂零的群的D-长、亚幂零群的S-长的概念;给出极小非D-群和S-群的分类,它们有着独立的意义;给.出了子群的F-剩余的Norm的新概念,例如考虑F是包含幂零群系和超可解群系的饱和群系。3、根据张继平教授的建议.(对于我们提出的几类广义Norm的概念不需要考虑所有的子群,只需要找出有代表的某类子群)给出了更多新的广义Norm的概念。.二、关于融合系,首先是对张继平教授提出的构想(根据可解群的理论给出可解融合系的系统理论)进行了系统的研究.;然后给出了Solomon和Stancu猜想p-可解情形的证明,构造了一般融合系的反例(是否饱和融合系的每个强闭子群上存在一个弱正规子系.)进行研究。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
2

Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction

Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction

DOI:10.3390/e19110599
发表时间:2017
3

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
4

自流式空气除尘系统管道中过饱和度分布特征

自流式空气除尘系统管道中过饱和度分布特征

DOI:10.11817/j.issn.1672-7207.2021.12.006
发表时间:2021
5

滴状流条件下非饱和交叉裂隙分流机制研究

滴状流条件下非饱和交叉裂隙分流机制研究

DOI:10.16285/j.rsm.2020.0744
发表时间:2021

申振才的其他基金

相似国自然基金

1

关于广义Norm与Frobenius定理的广义逆问题的研究

批准号:11661023
批准年份:2016
负责人:陈松良
学科分类:A0104
资助金额:21.00
项目类别:地区科学基金项目
2

可积系统的可积分解、可积形变和显式解

批准号:10871165
批准年份:2008
负责人:周汝光
学科分类:A0308
资助金额:26.00
项目类别:面上项目
3

有限群论的重要方向-Tits几何及融合理论与可解群论

批准号:19671073
批准年份:1996
负责人:黄建华
学科分类:A0104
资助金额:8.00
项目类别:面上项目
4

低维量子可积系统和凝聚态可解模型

批准号:19175045
批准年份:1991
负责人:赵保恒
学科分类:A2601
资助金额:2.50
项目类别:面上项目