Spline functions are ubiquitous in a large variety of scientific and engineering disciplines. The most fundamental spline functions are piecewise polynomials, that are founded upon univariate B-splines and/or multivariate B-splines. This project aims to significantly advance the research frontier of B-splines by articulating a brand new methodology deviating from prior B-spline paradigms, and devising a novel computational framework. At the theoretic level, our technical foci are on the novel theory that bridges multivariate biharmonic B-splines and Green’s functions towards dual representations, which have heretofore remained unexplored in data representation, modeling, processing, and analysis. At the algorithmic level, in sharp contrast to conventional B-splines, the knots of biharmonic B-splines are totally free without any constraint. They do not rely on any user-specified planar/volumetric parameterization and are free of singularity. Yet, their bases are constructed based on finite difference approximation, which is unstable when the knots are distributed unevenly. We devise novel optimization-centric algorithms for bases construction in order to improve the algorithm robustness. Moreover, current bases construction is computationally expensive, we shall take advantage of the intrinsic connection between biharmonic B-splines and Green’s functions towards better design and development of more effective algorithms. We envision that the computation of biharmonic B-splines could be significantly simplified by Green’s functions, hence enhancing their performance and flexibility with greater potentials never explored before. At the application level, we plan to integrate biharmonic B-splines with numerical solutions of popular partial differential equations (PDEs), and our goal is to expand biharmonic B-spline application scope for image vectorization, distance metric and clustering on graph far beyond the traditional boundary of geometry computing.
样条函数已广泛应用于多种科学和工程领域。最基本的单变量B样条和/或多元B样条函数可用分段多项式表示,该项目旨在阐明一个全新的B样条范式,并设计一种新的计算框架,来进一步推进B样条的前沿研究。在理论层面,拟采用全新的隐式表达来描述双调和B样条函数,架起多元双调和B样条和格林函数的桥梁。在算法层面,我们将设计以优化为中心的基函数构建算法来提高算法的鲁棒性,设计没有任何约束,完全自由的双调和B样条的节点,使样条不依赖于任何用户指定的平面/立体参数化,并且无奇异性。同时,我们将充分利用双调和样条和格林函数的内在联系,使双调和B样条的计算可以借助格林函数显著简化,从而提高其性能和灵活性。在应用层面,我们计划把双调和B样条与流形偏微分方程的数值解相结合,使其能够超越几何计算的传统界限,应用于图像矢量化,离散图上距离度量及聚类,来进一步扩大双调和B样条的实际应用范围。
本项目提出了基于格林函数的双调和B样条函数计算方法,从而简化双调和B样条函数计算。基于格林函数相关理论,我们提出格林聚类方法,模拟狭管效应,用格林函数完成数据嵌入,我们发展了泊松曲面算法,提出可微泊松重建算法,无需输入定向法向量,完成三维表面重建。在更多应用方面,提出泊松矢量图模型,能够更好地控制光照明暗变化,并将其用于人脸图像视频编辑,以及基于草图的三维建模。提出基于热方程的时变扩散曲线,模拟基于笔画的绘画过程。本项目共发表学术论文13篇,其中在ACM SIGGRAPH、IEEE TVCG发表CCF A类论文4篇,发表CCF B类论文2篇,申请国家发明专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
拥堵路网交通流均衡分配模型
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
盘B样条和球B样条造型的理论及其应用
CAD中点集B样条的理论及应用研究
CAD中变次数B样条升阶性质及应用研究
CAD中次数任意可变的拟B样条曲面的理论及应用研究