This project focuses on component design, microstructure control, macroscopic morphology assembly, and the relationship between structure and properties of amine-based conjugated microporous polymers (CMPs) and derived porous carbons for electrochemical energy storage and conversion applications. Firstly, on the basis of traditional Buchwald-Hartwig coupling protocol, a series of amine-linked CMPs with strong redox-activity and tunable porosity will be precisely synthesized via regulation of aromatic bromines and amines as well as the selection of the heteroatoms (i.e. N, P, B, and O) of the aromatics. Secondly, with above-mentioned CMPs as the precursors, heteroatom and non-noble-metal doped functional porous carbons with unique structures will be rationally prepared via optimization of metal-loading and pyrolysis techniques. Finally, the applications and mechanisms of as-prepared CMPs and porous carbons for supercapacitors and electrochemical hydrogen evolution reaction will be emphatically investigated; and the results will be further verified using density functional theory (DFT) calculations. High-quality of electrochemical energy materials are expected to be produced after a successful implementation of the project. It is believed that the research achievements of the project could meet the national economy and social development of new energy strategic needs, have important scientific significance and application value.
本项目面向电化学能源存储与转换的应用要求,主要研究亚胺基共轭微孔聚合物(CMPs)及其多孔炭的组分设计、微观结构控制、宏观形态组装以及构效关系。首先,创新性地采用经典Buchwald-Hartwig偶联技术,通过优化起始芳溴与芳胺单体并巧妙地引入杂原子比如N、P、B、O等,精确合成主链含氮、强氧化还原活性以及孔结构可控的一系列亚胺连接的CMPs;其次,以亚胺基CMPs为前驱体负载过渡金属并优化炭化工艺,理性制备杂原子、非贵金属掺杂的新型功能多孔炭;最后,重点考察上述CMPs及其功能多孔炭在超级电容器和电催化析氢等方面的应用效果和作用机制,并与密度泛函理论模拟计算结果相印证。本项目成功实施有望获得高品质电化学能源材料,其研究结果可为相关材料的研制提供理论指导,并满足国民经济与社会发展对新能源的战略需求,具有重要的科学意义和应用价值。
本项目面向电化学能源存储与转换的应用要求,主要研究了亚胺基和吡啶基共轭微孔聚合物(CMPs)及其多孔炭的组分设计、微观结构控制、宏观形态组装以及构效关系。首先,创新性地采用经典Buchwald-Hartwig、Schiff-base和Chichibabin等多种碳氮偶联技术,通过优化起始芳溴、芳胺、芳醛、芳酮单体并巧妙地引入杂原子比如N、O等,精确合成了高氮氧含量(20%)、强氧化还原活性以及孔结构可控的一系列亚胺和吡啶连接的CMPs;其次,以亚胺基和吡啶基CMPs为前驱体负载过渡金属并优化炭化工艺,理性制备了杂原子、非贵金属掺杂的新型功能多孔炭(比表面积最高达2356 m2/g);最后,重点考察了上述CMPs及其功能多孔炭在超级电容器、电催化析氢、电催化氧还原等方面的应用效果和作用机制,并与密度泛函理论模拟计算结果相印证。相关研究结果为高性能电化学储能和电催化能源转化材料研制提供了理论指导和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
多维咔唑基共轭微孔聚合物的分子设计及其吸附与传感功能
用于二氧化碳吸附与分离的密胺基微孔聚合物材料
面向能源存储的高氮掺杂规则微孔碳球的设计合成
面向能源转换与存储的新型氧化物纳米阵列的设计合成