Currently lined vessels are commonly used in process industries which were composed of vessels and pipes. Geometrical effect of gas explosion exists due to the complexity characteristic of the structure of linked vessels. However, now available research achievement can not be applied to lined vessels because of ignorance of the effect of structure and size on gas explosion characteristic. The research objects are restricted to single vessel or pipe with specific shape and size. In this project, on the background of explosion protection of linked vessels, the effect of structural style and size on flammability and explosion characteristic of methane and air mixture in linked vessels is investigated through theoretical analysis, numerical simulation and experimentation with the introduction of schlieren photography and image processing technology. First, the occurrence conditions of flame quenching and deflagration to detonation which is called as DDT, and dynamic evolutionary process of methane explosion in linked vessels are researched. The effect of structural style and size on flammability and explosion characteristic of methane and air mixture in linked vessels are obtained, such critical diameter and DDT. Then dynamic characteristics, turbulence, jet fire and energy change, of methane explosion are studied. The influence mechanism of structural style and size is discussed. Meanwhile, the relationship of geometrical similarity and methane explosion characteristic are setup. At last, the simulation of methane explosion processes in linked vessels is carried out. Combined with experimentation results, the nomogram of explosive strength for methane explosion is obtained. Then the prediction model of explosion strength is established with the consideration of effect of structural style and size. The research results can provide theoretical support and scientific basis for safety design of explosion venting, explosion resistance and explosion suppresion in linked vessels.
容器和管道连接组成的连通装置,由于其固有的结构特征使之存在明显的爆炸几何效应,而现有的研究成果均局限于固定形状和尺寸的单一结构的容器或管道,而不能推广应用于连通装置。因此,本项研究以连通装置安全防护为背景,引入爆炸纹影图像测试和图像处理技术,综合采用理论分析、数值模拟和实验研究的方法,研究结构尺寸对连通装置甲烷-空气混合物燃爆特性的影响。研究连通装置爆燃火焰淬熄和爆燃转爆轰的发生条件及动力学演化过程,揭示结构和尺寸对甲烷爆炸临界管径和爆炸强度的影响规律;研究甲烷燃爆炸过程中湍流、射流火焰与能量变化等动力学特征,寻求结构尺寸对甲烷燃爆特性的影响机制;研究连通装置结构尺寸相似性与甲烷燃爆参数之间的关系,对甲烷爆炸过程进行数值模拟,结合实验结果,绘制甲烷爆炸强度计算图表,建立甲烷燃爆特性数据库及其爆炸强度预测模型,为工程上连通装置气体泄爆、抗爆、抑爆的安全设计提供理论支持和科学依据。
连通装置气体爆炸尺寸和结构效应研究具有重要的工程应用价值。本项目研究了连通装置爆燃特性及动力学演化过程,揭示结构和尺寸对甲烷爆炸强度的影响规律;研究了甲烷燃爆炸过程中湍流、射流火焰与能量变化等动力学特征,寻求结构尺寸对甲烷燃爆特性的影响机制;研究了连通装置结构尺寸相似性与甲烷燃爆参数之间的关系,绘制了甲烷爆炸强度计算图表,建立了甲烷燃爆特性数据库及其爆炸强度预测模型。. 本项研究共发表和录用SCI期刊论文19篇,EI期刊论文7篇,会议论文16篇;已获得授权发明专利2项,公开发明专利3项,已获得授权实用新型专利2项;项目负责人参加国际国内学术会议7次,担任大会(分会场)主席2次,做大会(特邀)报告4次,其中在本学科有重要影响的国际会议International Symposium on Safety Science and Technology和International Workshop on Intensive Loading and Its Effects上作大会特邀报告2次;作为主要研究内容之一,获得中国产学研合作合作促进会创新成果二等奖、中国石油和化工联合会科技进步一等奖和教育部自然科学二等奖;研究生毕业9人,本项目研究继续发展已经成为2016年国家科技部重点研发计划子课题。项目负责人2014年获得江苏高校优秀科技创新团队,并入选江苏“六大人才高峰”培养对象,2015年获得中国石油和化学工业联合会优秀科技创新团队奖, 2016年入选江苏省“333工程”第二层次中青年领军人才培养计划,2017年获得侯德榜化工科技创新奖荣誉称号,2篇SCI收录论文被引10 次以上。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
农超对接模式中利益分配问题研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
有机混合物燃爆特性的实验及理论预测研究
内嵌炸药MIC纳米阵列的构建及其微尺寸燃爆特性
氢气/碳氢燃料/空气混合物燃烧爆炸特性研究
钼基催化剂MoS2结构和尺寸调控及其对耐硫甲烷化性能的影响