离散与组合几何是现代数学的重要分支,是计算机科学的基础,具有十分广阔的应用前景。本项目主要研究其中的两类问题:锐角三角剖分问题和F-凸性问题。.三角剖分理论在计算机图形学、算法设计、数据结构、模式识别、物理模拟、地理信息系统、AutoCAD图形系统开发和三维建筑造型设计等很多工程领域及研究中都有着十分广泛的应用。本项目拟研究的四面体表面、双凸集表面和三维空间中多面体的锐角三角剖分问题是目前国际上三角剖分研究中亟待突破的前沿问题。.凸性理论研究源于阿基米德时代,它是许多数学分支的重要理论基础。离散与组合几何领域凸性理论研究的主要对象是凸集。本课题拟研究凸集概念的一类推广,即刻画给定集族F导出的所有F-凸集,并讨论F-凸性下离散与组合几何学三个基本定理的推广,判定哪些集族为F-凸稳定等问题。这些问题均是崭新的前沿问题,研究结果将有助于构建离散与组合几何中凸性理论研究的基本框架。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
氯盐环境下钢筋混凝土梁的黏结试验研究
基于分形维数和支持向量机的串联电弧故障诊断方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
多面体的锐角三角剖分及其算法研究
三角剖分、凸性问题及阿基米德铺砌相关性质研究
Helly型问题与三角剖分问题
剖分类零件断裂剖分动态行为与裂解加工关键技术研究