To resolve the technologic problems of poor heat dissipation, large standby loss and gyroscopic effect in flywheel battery system for electric vehicle, a disc flywheel battery topology with large air gap is designed reasonably to minify the influence of gyroscopic effect and reduce the energy consumption of the system in the project. On the other hand, the zero power decoupling control strategy is proposed to increase stable operation substantially with low energy consumption. The project is framed around some issues related to the structure and control of the magnetic suspended flywheel battery system. The structure characteristics, design rules, operational principle and optimization scheme of flywheel battery system is first studied to suitable for meeting the low power consumption and stability control requirements of electric vehicle. The influence mechanism of foundation movement on the dynamic characteristics of the magnetic suspended flywheel battery is explored and the dynamic model of flywheel battery is studied. The generation principle of gyroscopic effect and the influence rule of various nature of external disturbance and the phase delay on the stability of flywheel rotor system are explored. Then the multiple operation areas are assigned based on the gyroscopic effect mechanics and the stability analysis results of flywheel battery. By adjusting the position of air gap and setting the dynamic inverse switched model, an online zero power consumption algorithm in each running state of flywheel battery can be implemented, and then an effective zero power decoupling control strategy are established eventually. The research results lay the theoretical and experimental foundation for the flywheel battery system for electric vehicle under the influence of foundation movement to ensure low power consumption and high stability operation.
针对电动汽车用飞轮电池系统散热差、待机损耗大、陀螺效应等技术难题,本项目通过设计一种大气隙盘式飞轮电池拓扑结构,抑制陀螺效应并减小系统能耗,提出零功耗解耦控制策略,提高了系统的低能耗稳定运行性。项目围绕磁悬浮飞轮电池系统结构与控制的相关问题开展研究,主要研究满足电动汽车低能耗高稳定性运行要求的飞轮电池结构特征、设计规律、运行原理及优化方案;探寻基础运动对磁悬浮飞轮电池动态特性的影响机理,构建飞轮电池动态模型;探索陀螺效应产生原理以及各种性质的外界扰动、相位滞后等对飞轮转子系统稳定性的影响规律;结合陀螺效应力学与飞轮电池稳定性分析结果,划定飞轮电池多个运行区域,在每个运行区域通过调整悬浮气隙的位置与设定逆动态切换模型,实现飞轮电池每个运行状态的零功耗在线算法,建立有效的零功耗解耦控制策略。这项研究为基础运动影响下电动汽车用飞轮电池系统实现低能耗、高稳定性控制运行奠定理论基础与实验基础。
针对电动汽车用飞轮电池系统散热差、待机损耗大、陀螺效应等技术难题,本项目通过设计新型飞轮电池拓扑结构,抑制陀螺效应并减小系统能耗,提出零功耗解耦控制策略,提高了系统的低能耗稳定运行性。项目围绕磁悬浮飞轮电池系统结构与控制的相关问题开展研究,主要研究满足电动汽车低能耗高稳定性运行要求的飞轮电池结构特征、设计规律、运行原理及优化方案;探寻基础运动对磁悬浮飞轮电池动态特性的影响机理,构建飞轮电池动态模型;探索陀螺效应产生原理以及各种性质的外界扰动、相位滞后等对飞轮转子系统稳定性的影响规律;结合陀螺效应力学与飞轮电池稳定性分析结果,划定飞轮电池多个运行区域,在每个运行区域通过调整悬浮气隙的位置与设定逆动态切换模型,实现飞轮电池每个运行状态的零功耗在线算法,建立有效的零功耗解耦控制策略。这项研究为基础运动影响下电动汽车用飞轮电池系统实现低能耗、高稳定性控制运行奠定理论基础与实验基础。.项目提出的新型向心力式球面磁轴承的拓扑结构及精确建模方法,为突破传统柱面磁轴承拓扑结构,以实现更为优越的稳定性能的飞轮电池悬浮支承系统起到了借鉴作用,为新型飞轮电池拓扑结构的研制与开发奠定了理论和实践基础。.项目提出利用ADAMS与MATLAB进行基础影响下车载飞轮电池动态性能的动态仿真分析,用于探索基于基础运动的磁悬浮飞轮电池支承系统陀螺效应的形成机理,揭示不同路面上的工况变化产生的各种外界扰动对飞轮转子系统稳定性的影响规律,为实现工况下低能耗高稳定的电动汽车用飞轮电池的控制器设计奠定了理论基础。.项目中搭建的模拟车载工况下的磁悬浮飞轮电池的立式磁悬浮轴承台架及控制平台,一方面使本项目取得的理论成果的可行性、有效性和可靠性得到系统验证,另一方面可以通过该系统的示范作用推广本项目所取得研究成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
黑河上游森林生态系统植物水分来源
敏感性水利工程社会稳定风险演化SD模型
城市电动公交车用锥形磁悬浮飞轮电池集成系统多物理场优化设计与运行控制
电动汽车机电飞轮混动系统能量优化管理与状态切换协调控制
车载磁悬浮飞轮电池多模自适应混合控制策略研究
电动汽车用高效宽增益双向直流变换器及其运行控制