This subject starts from improving the fault-tolerance of three-phase PMSM, and proposes a research subject of a novel phase unit modular PMSM with integral-slot non-overlapping concentrated windings used in electric vehicles. This subject combines integral-slot motors with concentrated winding motors. The stator space is transformed along circular-radial-axial direction effectively to realize electrical, magnetic and thermal isolation, while the performance of high torque density remains excellent as common permanent magnet motors. In addition, the motor design difficulties in high reliability and fault-tolerance have also been taken into consideration synthetically. By making full use of the design idea of modularization and winding control technologies, the operation performance of the motor such as high torque density and high fault-tolerance can be achieved with appropriate combinations of pole-slot-phase-path. Unlike the fractional slot concentrated winding motors, the motor has no subharmonic during normal operation. Besides, the motor also has less copper loss because of the usage of non-overlapping windings. During one-phase or multi-phase fault operation, the optimum operating state can be achieved by means of multi-pole split-phase modular stator shunt control. This subject researches on theoretical analysis, numerical calculation and experiments towards the influence of stator and rotor structure, pole-slot-phase-path combination, stator split ratio, length-diameter ratio, cooling type and fault-tolerance control strategy on torque performance and operating state. This study is the forefront subject in electrical engineering as well as energy and transportation fields, which will promote the study of fault-tolerant permanent magnet motor and the development of motor’s modularization and universalization.
本项目从提高三相永磁同步电机容错性能出发,提出新型相单元模块化整数槽非重叠绕组永磁同步电机的研究课题。本课题将整数槽绕组和非重叠绕组电机有机结合,综合考量电机高可靠性和高容错性的设计难点,将定子空间沿周-径-轴向有效变换,物理上实现了电机的电、磁和热隔离。充分利用模块化电机设计思想和绕组控制技术,通过恰当的极槽相路配合,实现电机的高转矩密度和高容错性。当电机正常运行时,该电机既具有非重叠绕组电机低铜耗的优点,又无分数槽集中绕组电机丰富的次谐波;当电机出现单相或多相故障时,通过多极分相模块化定子分路控制,可实现故障电机的最佳状态运行。本课题围绕定转子结构形式、极槽相路配合、定子裂比及长径比、冷却方式及容错控制策略等对电机转矩性能和运行状态的影响开展理论分析、数值计算和实验研究。该项研究工作是电气工程学科及能源交通领域的前沿课题,必将推动永磁容错电机的研究和促进电机的模块化和通用化发展。
本项目从提高三相永磁同步电机容错性能出发,提出新型相单元模块化整数槽非重叠绕组永磁同步电机的研究课题。本课题将整数槽绕组和非重叠绕组电机有机结合,综合考量电机高可靠性和高容错性的设计难点,将定子空间沿周-径-轴向有效变换,物理上实现了电机的电、磁、热及物理隔离。充分利用模块化电机设计思想和绕组控制技术,通过恰当的极槽相路配合,实现电机的高转矩密度和高容错性。.本课题首先分析了整数槽非重叠集中绕组永磁同步电机的电磁转矩生成机理,证明了整数槽非重叠集中绕组永磁同步电机的三相合成转矩与传统永磁同步电机具有相同的输出特性。通过理论分析和仿真计算对整数槽非重叠集中绕组永磁同步电机与整数槽重叠绕组永磁同步电机进行了综合的比较,得出相比于传统的整数槽重叠绕组永磁同步电机,该整数槽非重叠集中绕组永磁同步电机在低速大转矩领域具有更为优越的性能,同时具有较高的短路电流抑制能力和弱磁能力。接下来本课题着重对整数槽非重叠集中绕组电机在各类短路故障下的性能进行了理论分析、仿真计算和实验研究。从提高整数槽非重叠集中绕组电机在短路故障下永磁体的抗去磁性能角度出发,重点研究了在短路故障情况下电机的结构参数对永磁体表面磁密分布和短路电流幅值的影响,并通过理论分析和仿真计算相结合的方法完成了电机的优化设计,加工并制造了一台样机。对由整数槽非重叠集中绕组电机的特殊结构所带来的相比于传统电机在发生匝间短路故障下的性能优势进行了深度剖析,指出整数槽非重叠集中绕组电机结构本身能够起到缓解匝间短路故障严重程度的作用。分析了绕组并联支路数和并绕根数对匝间短路故障的影响;结合整数槽非重叠集中绕组电机的特点提出了有效的匝间短路故障缓解方法。. 该项研究工作是电气工程学科及能源交通领域的前沿课题,必将推动永磁容错电机的研究和促进电机的模块化和通用化发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
滚动直线导轨副静刚度试验装置设计
纯电动汽车用单双层混合绕组型模块化多相容错永磁同步电机的研究
车用内置切向式分数槽永磁同步电机损耗解析建模与效率优化研究
开绕组永磁同步电机全速域优化模型预测控制研究
模块化环形绕组全超导同步电机的磁热电耦合特性研究