To meet the national strategies of developing new energy vehicles, a novel electric machine scheme with self-owned intellectual property, i.e., the modular multiphase fault-tolerant permanent-magnet synchronous machine (PMSM) with hybrid single/double-layer windings, is investigated for pure electric vehicles. The proposed scheme not only has the advantages of the conventional three-phase PMSM, such as high efficiency and high power density, but also has the characteristics like high reliability and high fault-tolerant capability. Hence, this scheme is an ideal solution for the electric drive system of the next generation. This technology is also suitable for aerospace and ship propulsion fields where require high reliability of the machines. .In this project, analytical and finite-element analysis models, and system simulation models will be built for the proposed machine, and the machine parameters, electromagnetic, thermal and mechanical performances will be calculated based on these models. The design technologies of achieving high efficiency, high power density, high reliability and modular design are developed for the proposed machine, and problems such as rational balance between electromagnetic loadings, optimization of structural parameters, coordination of different speed ranges, the effect of winding shape and distribution on short-circuit current, and the influence of different magnetic materials on modular design will be investigated. The control strategies of achieving best performances under both healthy and fault conditions, and the fast fault diagnosis methods will be studied for the proposed machine. A prototype machine will be manufactured and experimental research will be carried out, and the specific theory and engineering design method will be obtained for this kind of machines.
针对国家发展新能源汽车的战略需求,本项目拟研究一种用于纯电动汽车并具有自主知识产权的新型电机方案——单双层混合绕组型模块化多相容错永磁同步电机,该方案具有传统三相永磁同步电机高效率和高功率密度的特点,同时还有着高可靠性和高容错运行能力,是下一代电驱动系统的理想选择。该技术可推广到航空航天和舰船推进等其他对可靠性要求很高的场合。.本项目拟建立该电机的解析分析、有限元分析和系统仿真模型,对其内部的各种参数、电磁、温升和机械性能进行计算。研究该电机的高效率、高功率密度、高可靠性和模块化设计技术,包括研究电磁负荷的合理匹配、结构参数优化、不同速度段的协调配合、绕组形状和位置分布对短路电流的影响、以及不同磁性材料对模块化设计的影响等问题。同时探求使该电机的正常运行性能和容错能力得以最优发挥的控制策略、以及该电机的快速故障诊断方法。研制样机进行实验研究,形成该类电机的专门理论和工程设计方法。
针对纯电动汽车应用背景,本项目研究了一种单双层混合绕组型模块化多相永磁容错电机。完成了单双层混合式分数槽集中绕组的方案分析,并与传统单层和双层绕组方案进行了对比。完成了单双层混合绕组型模块化多相永磁容错电机的设计和优化工作。结合该类电机特殊定子结构,确定了其极槽配合方案选取原则。通过优化双层绕组槽和单层绕组槽中心轴线跨距角,有效提高了绕组系数。通过优化单层及双层绕组槽口宽度,达到了提高电磁性能和抑制短路电流的效果。探索了模块化多相永磁容错电机在开路故障下的容错运行控制策略。针对一相、相邻两相及相隔两相开路故障,结合对中性点电流约束与否的考虑,推导了基于磁动势不变原则和功率不变原则的容错电流表达式,采用有限元法对不同控制方式下的转矩输出特性进行了评价。针对匝间短路故障,建立了匝间短路等效电路模型,通过磁路法计算了短路绕组和剩余绕组的电感参数,结合电路理论对绕组短路电流进行了计算,并与有限元仿真结果进行了对比分析,验证了提出方法的有效性。进一步基于有限元法,对不同匝间短路故障情况下的电机转矩输出特性进行了评价。在单双层混合绕组型模块化多相永磁容错电机方案的基础上,进一步提出并研究了低空间谐波模块化多相永磁容错电机方案。研制了样机并开展相关实验研究,以证明理论结果正确性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
五轴联动机床几何误差一次装卡测量方法
基于混合优化方法的大口径主镜设计
环形绕组无刷直流电机负载换向的解析模型
电动车用相单元模块化整数槽非重叠绕组永磁同步电机研究
电动汽车用内置双层磁钢永磁同步电机优化设计与最优运行控制
高容错开放式绕组永磁同步电机的控制机理及实现研究
基于多抽头绕组永磁同步电机的电动汽车驱动-充电集成系统研究