This project focuses on the functionalization of C-H bond through synergistic catalysis that merging photoredox catalysis with transition-metal catalysis to solve problems such as excessive oxidants, high temperature, multi side reactions, and poor functional group compatibility that commonly existed in organic synthesis. The most widely used photoredox catalysts are coordination complexes of Rh, Ir, Au, Co, Cu coordinated with various ligands. Upon absorption of a photon, an electron in one of the photocatalyst’s metal-centered orbitals is excited to a ligand-centered orbital and results the excited state of the catalyst. The photoexcited species are both more oxidizing and more reducing than the ground state species which tend to generate active radical intermediates through SET. Meanwhile another substrate is activated by transition-metal catalyst. New bonds are formed through the coupling of those two active species rapidly over lower energy barrier and complete the synergistic catalytic cycles. The redox potentials of the photoredox catalysts could be altered via elaborate selection of metals and ligands. Thus, C-H alkylation, trifluoromethylation amination, arylation and alkenylation could be realized under mild conditions by the appropriate choice of photocatalyst, transition-metal catalyst and substrates. This kind of reaction could be conducted at room temperature with good functional group tolerance and high atom economy. The irradiation source can be sun light or commercial household light bulbs without the requirement of specialized equipments, which is sustainable and environmental-friendly. It confirms to the green-synthetic policy.
本项目拟将可见光氧化还原催化剂与过渡金属催化剂结合,实现协同催化C-H官能化反应,重点解决一些常见反应中出现的氧化剂过量、温度高、副反应多、官能团兼容性差等问题。以Rh、Ir、Au、Co、Cu为中心原子的光敏催化剂在吸收可见光光子后跃迁至高活性的激发态,通过单电子转移活化底物得到活性自由基;同时过渡金属催化剂将另一底物活化。两种活性反应中间体以较低的活化能迅速结合形成新的化学键,完成协同催化双循环。通过改变中心金属种类、配体种类及电性调节光敏催化剂的氧化还原电位,保证与各类底物发生单电子转移。通过选择合适的可见光氧化还原催化剂、过渡金属催化剂及反应底物,开辟新的途径实现温和条件下C-H键的烷基化、三氟甲基化、胺化、芳基化、烯基化等反应。该类反应在常温下进行,官能团兼容性好,原子经济性高。以太阳光或家用LED灯为光源,不需要特殊反应装置,操作简单,符合绿色合成的要求,具有重要意义及价值。
C-H键是有机化合物中存在最普遍的化学键,对C-H键的直接活化官能化,可以避免卤原子的引入和脱除,缩短反应流程,是一种原子经济性和步骤经济性都很高的反应类型,具有重要研究价值。我们主要从自由基反应和过渡金属催化反应两个方面出发,实现对C(sp3)-H键、C(sp2)-H键的活化官能化,合成了多种功能性杂环分子及其他一些有用的结构。. 自由基反应方面,我们发展了基于自由基历程串联反应。以脂肪族甲醛、酰基过氧化物、多氯甲烷、丙酮、乙腈、醚等为自由基供体,经历自由基加成、环化、脱氢氧化等过程,实现了多种官能化杂环结构的合成。如4-烷基官能化的异喹啉1,3-二酮,3-烷基、多氯甲基、氰甲基、氧代烷基等取代的吲哚酮等。“一锅煮”反应,同时实现多个化学键断开及多个化学键生成。以脂肪族甲醛、醇为自由基来源,通过自由基Michael加成反应,实现了对色酮化合物的衍生化,得到2-烷基、羟烷基取代的色满酮。此外,还实现了自由基历程的芳基、炔基迁移重排反应,得到复杂三取代烯烃、官能化羰基化合物等结构。. 过渡金属催化反应方面,利用铑、铱为催化剂,在特定定位基团的导向作用下通过sp2 C-H活化,实现对查尔酮、吲哚啉、氮杂吲哚等结构的官能化,并可以实现吡啶、咪唑异喹啉、吲哚酮、吖啶、苯并异色酮等结构的构建;在铜、钯催化作用下,实现了官能化吲唑、喹啉、吡啶并异喹啉等结构的构建。. 我们还在其他方面,如以二硫醚为硫源实现N-S键的构筑、以无机Na2S2、单质硫为硫源,合成硫酰胺、噻二唑等结构;用安全氰源实现芳杂环的氰基化;过渡金属催化、碱催化、可见光促进CO2固定反应得到高附加值的有机物等领域都做了一些相关工作,得到一些初步的成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
过渡金属与可见光氧化还原协同催化的惰性C-H键官能化研究
过渡金属催化的C-H键活化`官能化及其应用
过渡金属催化的光氧化还原环化反应的机理研究
可见光氧化还原-有机协同催化串联成环反应体系研究