The studies of the photoinduced and electric-field-driven ET processes and energy converting are very important for revealing the mechanism of electron transfer and energy transfer and building up a mimic photoelectric element on the molecular level. The studies for Rb. Sphaeroides, especially for the ET processes in RC, are more attractive and hundreds of papers are published every year. However, most of the studies on the photoelectric processes are performed by the spectral and biological methods and are indirect. Moreover, many problems associated with the photoelectric reaction parameters and the ET mechanism are still unsolved. In this project, the investigations surrounding RC were carried out with the electrochemical and photoelectrochemical methods, and a series of the innovative results were obtained. This research was of great significance for further understanding the ET processes and the photoelectric conversion mechanism in RC, fabricating the mimic biophotoelectric element and optimizing the performance of the biophotoelectric element.
利用来源于细菌光合反应活性中心的膜蛋白的光敏特性,结合纳米半导体的高效光电转换功能,制备高分子包埋的人工蛋白膜。采用现场光电化学手段研究膜内能量和电子传递过程。遗阐明光电化学反应涉及的复杂电子转移机理,同时探索光敏蛋白质的原位分析新手段。相关的研究有助于人工蛋白膜内功能实现过程的表征,为分子水平光电器件研制奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
内质网应激在抗肿瘤治疗中的作用及研究进展
能量转换膜电子传递方式质子转移与磷酸化关系
人工量子网络上的能量转换与信息传输
基于上转换荧光共振能量转移的超分子手性光敏化
铜基光敏染料的设计合成与光转换性能研究