通过近一年的研究,共有9篇论文被国外学术刊物录用与发表,其中的6篇在国际核心期刊上,还有6篇在国内核心期刊上。在这些论文中,彻底解决了美国的Hinkkanen问题,C.C.Yang问题,德国的Mues-Reinders问题,Frank问题等,这些是同行们多年来遗留下来的问题,难度很大,我们研究了超越函数动力学中的完全不变性,得到的结论与有理函数的性质截然不同;对有理函数,我们给出了斥性周期点乘子的上界估计,这个估计是精确的;我们首创将黎曼曲面理论引入唯一性研究,得到判断唯一多项式的准则,并且建立了分担一个值的唯一性定理。此外,我们还研究了拟周期函数的分解。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
复解析动力系统
C*上复动力系统
复动力系统及其应用
复动力系统及其应用