A critical parameter for hydrogen safety sensors is the response speed, which must be fast enough (< 1s at 4 vol% H2) so that people can have enough time for evacuation. Palladium (Pd) resistive hydrogen sensors based on anodic aluminum oxide (AAO) nanostructures have significant advantages over other hydrogen sensors because of their simple (low cost) and robust structures. However, the response of Pd thin film hydrogen sensors is very slow (1-25 min). Using nanoporous AAO as substrates, Pd resistive hydrogen sensors showed much faster response (~70s) than those on smooth substrates (~1500s) and their sensitivity at low concentrations were also improved. It should be noted that among the Pd resistive hydrogen sensors, Pd mesowires showed the fastest response (~80 ms) and very high sensitivity due to a new sensing mechanism, "break junction". In this project, the response kinetics of Pd to hydrogen is studied and the robust, low-cost, and fast response Pd resistive hydrogen sensors are developed based on quasi-isolated Pd nano-islands obtained through modification of AAO nanostructure. The specific project objectives are listed as follows: 1) Theoretical analysis and experimental studies of response kinetics of Pd to hydrogen; 2) Improvement of the response speed of the AAO-based Pd film hydrogen sensors through AAO nanostructure modification (<1s at 4 vol% H2); 3) Studies of sensors with respect to other important parameters, including sensitivity, range and accuracy, selectivity, recovery time, drift, reliability, and temperature effect.
氢传感器的响应速率应小于1秒(H2浓度小于4%)是保证有足够时间疏散人群的关键。采用纳米孔AAO为衬底的Pd薄膜电阻式氢传感器不仅响应速率(~70s)比平整衬底的Pd薄膜电阻式传感器响应速率(~1500s)快很多,而且在低浓度下的灵敏度也显著提高。基于"裂结"敏感机理的介观纳米线结构Pd电阻式氢传感器不仅具有最短的响应时间(80ms),又有很高的灵敏度。本项目研究基于准隔离纳米结构的Pd金属电阻式传感器的响应动力学,在纳米结构的AAO上以准隔离的纳米颗粒为敏感层,制备结构坚固,成本低廉,响应速率快的Pd电阻式氢传感器。具体研究内容包括:1)Pd对氢的响应动力学研究;2)通过使用改进的AAO纳米结构模板制备响应速率小于1秒(H2浓度小于4%)的Pd电阻式氢传感器;3)研究包括灵敏度,检测范围,准确性和选择性等在内的其它相关重要参数指标。
研究出高响应速率的氢传感器,响应速率应小于1秒(H2浓度小于4%),对氢气泄漏引起的危险预警提供了足够疏散人群的时间。采用了AAO纳米结构衬底,制备的Pd薄膜电阻式氢传感器响应速率(~70s)比平整衬底的Pd薄膜电阻式传感器响应速率(~1500s)快很多,在低浓度氢气氛围下的灵敏度也显著提高。提出了基于“裂结”的敏感机理,解释介观纳米线结构Pd电阻式氢传感器具有快响应时间和很高的灵敏度的物理机理。本项目研究了基于准隔离纳米结构的Pd金属电阻式传感器的响应动力学,在纳米结构的AAO上以准隔离的纳米颗粒为敏感层,制备出结构坚固,成本低廉和响应速率快的Pd电阻式氢传感器。研究内容包括:1)Pd对氢的响应动力学研究;2)通过使用改进的AAO纳米结构模板制备响应在低浓度条件下速率小于14秒(H2浓度小于1.4%)的Pd电阻式氢传感器,该结果接近申请书中较高浓度氢浓度响应速率应小于1秒(H2浓度小于4%);3)研究包括灵敏度,检测范围,准确性和选择性等在内的其它相关重要参数指标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
基于资本驱动的新型互联网营造系统初探
基于干涉型微光纤器件的海水温盐压传感方法研究进展
快刀伺服系统的控制系统设计
基于“点接触”纳米间隙阵列结构制备高性能钯氢电学传感器
基于钯氢传感机理的反射式光纤束氢气传感器
Pd纳米点/TiO2纳米管复合结构调控及快速响应氢传感器基础研究
微结构可控多孔钯纳米膜的氢传感机理研究