Kaplan-Yorke型方程的周期解与次调和解问题

基本信息
批准号:11126063
项目类别:数学天元基金项目
资助金额:3.00
负责人:肖华峰
学科分类:
依托单位:广州大学
批准年份:2011
结题年份:2012
起止时间:2012-01-01 - 2012-12-31
项目状态: 已结题
项目参与者:郑波,龙玉华,石艳香,旷菊红,彭华勤
关键词:
次调和解KaplanYorke型方程最小周期临界点理论周期解
结项摘要

本项目针对Kaplan-Yorke型方程周期解的存在性与多重性、次调和解的存在性与多重性、周期解与次调和解的个数估计及解的最小周期问题,通过在适当的函数空间建立变分框架,将相应的问题转化为变分泛函对应的临界点问题,进而使用Maslov指标、相对Morse指标、Morse-Ekeland指标、Galerkin型Conley指标等临界点理论的工具,结合非线性分析方法,研究泛函临界点的存在性与多重性,并对临界点的个数进行精确的估计。本项目对Kaplan-Yorke型方程周期解与次调和解问题进行系统的研究,把Kaplan-Yorke型方程的相关结果推广到非自治、高维形式,同时,也为时滞微分方程周期解与次调和解的研究提供一些新的方法和思路,具有重要的理论意义和实际的应用价值。

项目摘要

本项目针对Kaplan-Yorke型方程周期解多重性与其最小周期问题,应用临界点理论将相应的问题转化为变分泛函对应的临界点问题,进而使用Maslov指标、Galerkin型Conley指标以及非线性分析的方法,研究泛函临界点的多重性,并对临界点的个数进行估计,并以此来研究周期解的多重性、解的个数及其最小周期。本项目对Kaplan-Yorke型方程周期解问题进行了研究,得到了几个成果,丰富了时滞微分方程周期研究领域的成果,填补了用临界点理论研究时滞微分方程周期解最小周期研究的空白。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

肥胖型少弱精子症的发病机制及中医调体防治

肥胖型少弱精子症的发病机制及中医调体防治

DOI:10.16368/j.issn.1674-8999.2018.12.569
发表时间:2018
2

基于旋量理论的数控机床几何误差分离与补偿方法研究

基于旋量理论的数控机床几何误差分离与补偿方法研究

DOI:
发表时间:2019
3

TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老

TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老

DOI:10.3969/j.issn.1001-1978.2022.02.019
发表时间:2022
4

信息熵-保真度联合度量函数的单幅图像去雾方法

信息熵-保真度联合度量函数的单幅图像去雾方法

DOI:10.3724/SP.J.1089.2019.17435
发表时间:2019
5

吹填超软土固结特性试验分析

吹填超软土固结特性试验分析

DOI:10.13544/j.cnki.jeg.2014.06.004
发表时间:2014

肖华峰的其他基金

相似国自然基金

1

Lagrange系统的最小周期解和次调和解问题研究

批准号:11226135
批准年份:2012
负责人:张兴永
学科分类:A0302
资助金额:3.00
项目类别:数学天元基金项目
2

Duffing方程调和解和次调和解的研究

批准号:11501170
批准年份:2015
负责人:程志波
学科分类:A0301
资助金额:18.00
项目类别:青年科学基金项目
3

非齐次非局部扩散方程的稳态解和周期解

批准号:11401277
批准年份:2014
负责人:孙建文
学科分类:A0301
资助金额:22.00
项目类别:青年科学基金项目
4

反应扩散方程的周期解,平衡解,行波解及反问题

批准号:19671005
批准年份:1996
负责人:李正元
学科分类:A0304
资助金额:4.80
项目类别:面上项目