Mine electric wheel truck (Mine Truck) is a kind of heavy carrying equipment with high energy-consumption. The strategies for its efficient energy-consumption are traditionally by means of mechanical & electrical system optimization and braking energy recovery. But the effect is often offset by the power mechanic itself or the cost for the electricity engineering or electric appliances. The mainstream optimization control has been the constant power adjustment to the drive system with continuous improvement, but this “passive” power-matching strategy with defective control index has not realized its ideal energy-efficiency. The project aims to research on the Mine Truck Energy-efficiency Control of Starting-Off Acceleration and Speed Regulation, and proposes a Self-optimization control for active power-matching in speed regulation. By establishing an Energy Consumption Model for the two kinds of process, we propose a comprehensive performance index for the energy consumption in operation, resulting an optimized evaluation (task) function for speed regulation, and finally work out a design for an intelligent energy-optimized control algorithm considering dynamic and static performance and energy efficiency indexes for Mine Truck Operation, realizing the active match for the power of speed regulation in operation.The success of this project is promising in establishing a theoretical system for energy-consumption optimization of the speed-regulation process control for Mine Trucks. It will provide brand-new technologies of easy energy saving and cost reduction for all such high energy-consuming devices, with substantial energy efficiency improvement. It can also provide inspiring methods for the energy efficiency control for all other highly powered drives and high energy-consuming systems of high working frequencies.
传统的重型矿用电动轮车节能策略为机电系统优化与制动能量回馈,皆因受动力机械本体与电气/器成本制约而难以奏效。尽管目前主流的传动系统“恒功调节”优化控制方法还在继续发展,但“被动”功率匹配策略与惯用控制指标缺陷等因素导致节能效果欠佳。本项目研究重型矿用电动轮车启动加速与运载调速过程节能控制理论,提出了调速过程“主动”功率匹配的能耗自寻优智能控制方法。该方法在建立两类过程能耗模型基础上,提出融入运载过程能耗的控制系统综合性能指标,并以此构建调速过程优化评价(目标)函数,设计出兼顾动、静态性能与能耗指标的运载过程能耗自寻优智能控制算法,以实现运载调速过程驱动功率的“主动”匹配。项目研究成功有望建立重型矿用电动轮车运载调速过程控制的能耗优化理论体系,为此类高能耗装备提供全新的节能技术手段,显著提高其节能效果,并为其他大功率驱动且频繁作业的高能耗系统提供可借鉴的节能控制方法。
本项目针对电动轮车频繁作业过程中启动加速与运载调速过程的复杂工况,提出调速过程节能理念,“主动”协调控制功率匹配,合理兼顾启动加速与运载调速过程的动、静态指标与能源消耗,实现运载调速过程的能耗自寻优,本项目主要创新工作如下:.针对电动轮车关键参数与状态信息难以实时获取的问题,本课题提出了一种双层增强估计器对总质量和道路坡度进行估计。该方法比多重遗忘因子的最小二乘法对质量的估计精度提高了11.12%,坡度估计精度提高了19.05%。为进一步提高参数估计的精度,本课题提出了交叉迭代估计器。该方法比传统最小二乘法的精度高,对车辆质量的估计精度提高了12.04%,对道路坡度的估计精度提高了27.43%。.对电动轮车在运载过程频繁起-停的高能耗的工况进行机理分析和能耗建模,是过程节能控制的基础。通过深入分析电动轮车启动加速过程能耗与加速性能、负载扰动之间的关系,建立融入能耗状态分量的整车“功率匹配”动力学模型,为电动轮车启动加速的控制策略和“主动”功率匹配算法设计提供理论基础。.在获取高精度状态信息和融入能耗的动力学建模基础上,提出了一种在非均衡驱动负荷工况下,电动轮车力矩分配与节能控制策略。通过构造模型自适应控制策略实现对总驱动力矩的控制,采用模糊逻辑理论,对质心侧偏角误差和横摆角速度误差进行模糊在线重构,采用PID控制器实时动态调节力矩分配系数。该方法比另外两种方法平均节能3.4%。.综合考虑动态指标与能耗指标,针对启动加速过程,提出了一种能耗优化起动控制策略,通过最优能耗控制的几何解析法,找出控制曲线的最优控制Bang-Bang弧,尽量减小能耗状态的超调而造成的能源浪费。在电动轮车启动过程,该方法比恒功率控制方法节能26.47%,比驾驶员手动控制方法节能42.98%。.本项目在工业节能过程控制基础理论方面做出了创新型性研究,应用在大型矿用电动轮车上取得了良好的节能效果。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
中国参与全球价值链的环境效应分析
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
大型矿用电动轮自卸车动力系统优化控制方法研究
高转矩密度永磁调速节能技术理论研究
交流调速系统结构与控制理论的研究
面向节能降耗的有色冶金过程控制若干理论与方法研究