大型矿用电动轮自卸车动力系统优化控制方法研究

基本信息
批准号:51577057
项目类别:面上项目
资助金额:63.00
负责人:周少武
学科分类:
依托单位:湖南科技大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:郭小定,刘朝华,宁重阳,张红强,韦文祥,左词立,周游,明瑞,张鑫
关键词:
鲁棒控制电动轮自卸车动力系统非线性优化控制
结项摘要

With the rapid development in economy, there is a growing demand for materials and energy in industry. Hundred-ton level electric wheels dump truck is important transportation for mining, which is a nonlinear system including time-varying, uncertainty and interconnection. According to the special controlled object and its operating environment, researches will be presented in this project for improving the vector control performance of its induction motor, synthetic control performance of its power system and its robust stability. (1) a open-loop intelligent identification system for induction motor is established,and rotor parameters intelligent estimation and rotor flux online compensation of the induction motor under low speed and large torque working condition are achieved by using online dynamic estimation method combining with intelligent compensation scheme based on the open-loop identification data, and a kind of intelligent vector decoupling control algorithm is designed adapted to the mining working condition. (2) The power system of electric wheels dump truck is a nonlinear control system. In order to analyse the dynamic performance and robustness of electric wheels dump truck, considering the uncertainty and nonlinearity of its power system, the control mathematical model of its power system is established. (3) Because mix H-two/H-infinity control can takes account of robust stability and robustness, in combining the direct feedback linearization with the mixed H-two/H-infinity control theory to design the synthetic controller for the power system, the specifications of the system are transformed to that of a standard H-two/H-infinity control problem, and a nonlinear H-two/H-infinity synthetic control law is developed for the power system. (4) A multi-objective optimization of mix H-two/H-infinity controller is design by means of differential evolution algorithm(DE). The research on this project has great significance for improving automation technology of our mining transport equipment.

百吨级电动轮自卸车是矿山开采过程中的主要运输设备,是一个具有时变、不确定性、关联耦合的非线性系统。针对矿用兆瓦级电动轮自卸车这一特殊控制对象及其运行环境,为提高电动轮自卸车牵引电机矢量控制性能和整车动力系统综合控制性能和鲁棒稳定性,本项目主要研究:(1)采用动态在线检测估计与开环工艺数据智能补偿相结合的方案,实现动态低速大扭矩工况下牵引感应电机转子参数智能估计与转子磁链智能在线补偿,在此基础上,设计出一种适应于矿山工况的智能矢量解耦控制算法;(2)充分考虑不确定性、非线性等因素,分析建立电动轮自卸车整车动力系统数学模型;(3)应用H2/H∞理论方法设计动力系统非线性H2/H∞综合控制律,应用差分进化算法实现对H2/H∞控制器多目标优化设计,达到提高电动轮自卸车动力系统动态性能、鲁棒性,以及降低动力系统整体能耗提高运行效益的目的。本项目的研究对于提升我国工矿运输装备自动化水平具有重要意义。

项目摘要

电动轮自卸车的电源由车载大功率柴油发电机组提供,容量有限,运行工况恶劣,工艺参数具有非线性,且波动大,对动力系统运行稳定性和鲁棒性要求更高。本项目从数理统计的角度出发,将不断变化的转子工艺参数视为随机变量,提出了一种基于随机概率分布的转子工艺参数样本的分布拟合方法,为牵引电机转子电阻的在线估计提供有效的实验数据;提出了基于动态学习粒子群(DPSO-LS)的逆变器驱动永磁同步电机系统参数估计方法,将逆变器、电气系统参数和永磁同步电机看作统一整体建模,并将参数辨识问题作为优化问题进行寻优估计,设计了动态学习型粒子群算法(DPSO-LS)对参数估计器进行寻优,所提参数估计方法能提高永磁同步电机系统电气参数估计和逆变器非线性因素扰动电压估计精度,并能有效跟踪相关电气参数变化;提出了一种新的动态差分进化与自适应突变算子算法,用于永磁同步电动机的多参数同步估计。数值仿真结果表明:以上提出的理论方法为电动轮自卸车动力系统参数辨识和建模提供了新的方法。矿用电动轮自卸车的交流传动系统是一个复杂的多能域系统,提出了基于键合图理论的复杂多能域系统的建模方法;将电动轮自卸车柴油发电机组转速H2/H∞控制器优化转化为多目标优化问题,提出了基于改进的多目标差分进化算法(IMOSADE)的H2/H∞控制器优化设计理论方法,较好得兼顾了动力系统跟踪性能和抗扰性能。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能

DOI:10.16085/j.issn.1000-6613.2022-0221
发表时间:2022
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020
4

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018
5

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019

周少武的其他基金

相似国自然基金

1

重型矿用电动轮车调速过程节能控制理论与方法研究

批准号:51674113
批准年份:2016
负责人:张英杰
学科分类:E0410
资助金额:62.00
项目类别:面上项目
2

大型风电叶片仿生流动控制机理与优化研究

批准号:51736008
批准年份:2017
负责人:张明明
学科分类:E0607
资助金额:300.00
项目类别:重点项目
3

基于分散控制原理的大型复杂结构布局/控制协同优化方法研究

批准号:11072197
批准年份:2010
负责人:徐斌
学科分类:A0806
资助金额:41.00
项目类别:面上项目
4

基于重分析方法的大型风电叶片高效交互式优化设计方法研究

批准号:51805163
批准年份:2018
负责人:高国强
学科分类:E0506
资助金额:25.00
项目类别:青年科学基金项目