The hydrotorting or catalytic hydrotorting process of oil shale is helpful for improving the yield and quality of shale oil, but there are some problems during these processes, such as high hydrogen consumption cost and difficult recovery of catalyst. Based on low-temperature activation of cold plasma and high selectivity of catalytic reactions, carbon dioxide reforming of methane by cold plasma assisted catalysis is proposed and then is integrated with oil shale retorting for oil production in this project. This novel integrated process supplies alternative hydrogen source for oil shale retorting exhibiting the benefits of low production costs, high efficient, energy-saving and low emissions. The macro-experiment and micro-mechanism analysis are carried out for investigating the key scientific problems, i.e., the optimization design of the integrated system, and revealing the regularities and mechanisms of oil production in the integrated system. Firstly, this project designs and builds a cold plasma reaction system for producing shale oil by the integrated process and then optimizes its structure. Secondly, the reaction system is used to explore the influence of different operating parameters on the yield and quality of the shale oil generated in the integrated process. The synergistic effects of different factors are analyzed to determine the optimal control scheme for producing shale oil with high yield and quality. Finally, the microscopic mechanism of shale oil formation in the integrated process and the control strategy of reaction pathways are investigated by means of stable isotope tracer method and kinetic simulation of elementary reactions combining the experimental regularities. The research work will provide technical guidance for the increase of the yield and quality of shale oil produced by retorting oil shale, and also provide scientific basis for enrichment of oil shale thermal transformation theory and scale-up design of reactor.
油页岩加氢或催化加氢干馏可提高页岩油产率及品质,但存在氢耗成本高和催化剂回收难等问题。冷等离子体催化CH4/CO2重整兼具冷等离子体低温活化及催化反应高选择性的优势,本项目提出其与油页岩干馏耦合制油的新方法,利用替代氢源有望降低生产成本同时实现高效低能耗低排放。围绕耦合制油系统的优化设计和耦合制油规律及机理的探讨等关键科学问题,从宏观实验和微观机理分析展开研究。首先,设计研制冷等离子体耦合制油反应系统并进行结构优化;其次,利用该系统探索不同运行参数对耦合过程生成的页岩油产率及品质的影响规律,分析各影响因素的耦合作用机制,确定油产率及品质协同最佳的调控方案;最后,联合稳定同位素示踪法与基元反应动力学规律模拟计算,在考察和总结实验规律的基础上揭示耦合制油过程的微观机理及反应历程的调控策略。这些研究将为油页岩干馏油产品增量提质提供技术指导,同时为丰富油页岩热转化理论和反应器设计放大提供科学依据。
油页岩加氢或催化加氢干馏可提高页岩油产率及品质,但存在氢耗成本高和催化剂回收难等问题。本项目结合冷等离子体低温活化和催化剂定向选择的优势,以冷等离子体催化CH4/CO2重整与油页岩干馏耦合制油,从宏观实验和微观机理分析展开研究。首先,利用热力学模拟软件进行甲烷干重整/催化干重整,油页岩干馏/催化干馏过程以及两者耦合反应过程的热力学分析,探索了耦合制油的可行性、优势及最佳耦合方式,研究结果表明耦合制油可行且甲烷催化干重整与油页岩干馏耦合制油效果较佳。其次,设计并构建介质阻挡放电低温等离子体甲烷活化与油页岩热解耦合反应装置及系统。为了与该耦合反应装置的实验结果进行对比,联合采用热重-红外联用分析仪和热裂解-气相色谱质谱联用仪等微型在线分析反应器研究了公合油页岩干馏及催化干馏产物析出特性,并利用化学反应动力学模拟计算法揭示了油页岩干馏反应机理。研究结果表明520℃且NiO/油页岩质量比为10%时油气产物品质最佳。最后,优化介质阻挡放电反应器,完善介质阻挡放电冷等离子体耦合制油反应系统。探索不同工艺参数对冷等离子体催化CH4/CO2重整与油页岩干馏耦合制油过程产物分布的影响规律,并采用氢同位素示踪法和化学反应动力学模拟计算法研究耦合制油反应机理。研究结果表明筒式刚玉管单介质阻挡放电反应器最适用,冷等离子体催化CH4/CO2重整与油页岩干馏耦合有助于油产品增量提质,同位素示踪法相比化学反应动力学模拟计算法更能准确有效的揭示耦合制油反应机理。本项目的研究成果将为油页岩干馏油产品增量提质提供技术指导,同时为丰富油页岩热转化理论和反应器设计放大提供科学依据。项目执行期间,发表学术论文9篇,其中8篇SCI论文,1项发明专利授权,4项发明专利公开,培养4名硕士研究生,2名已毕业,项目负责人晋升副教授。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
煤/生物质流态化富氧燃烧的CO_2富集特性
铁酸锌的制备及光催化作用研究现状
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
硫化矿微生物浸矿机理及动力学模型研究进展
微波与特征催化剂耦合强化CO2重整CH4制合成气的机理研究
生物油/水蒸汽/CO2重整制氢体系中催化剂积碳机理和基本规律研究
生物油催化重整制氢反应活性-积碳-烧结耦合机理定量研究
非平衡等离子体与催化协同常温一步转化CH4/CO2制乙酸及机理研究