Transportation of large-size payloads suspended from cables on a vehicle provides essential material-handling services throughout the world, such as assembling the island of an aircraft carrier in a shipyard, and delivering cargos to ships at sea. However, the flexible nature of the suspension cables degrades the effectiveness and safety. The payload oscillations under the vehicles induced by the motions commanded by the operators are major limitations. Operation for transporting large-size payloads could be more challenging because of the payload swing toward the driving direction and the payload twisting about the rigging cables. Therefore, control of payload oscillations is also complicated by several factors. Perhaps the most obvious complication is that the payload twisting must be suppressed. However, little attention has been paid on the dynamics and control of the payload twisting for an transporting load-suspension system. The project will focus on four areas: modeling of the industrial and aerial cranes with distributed-mass payload dynamics, dynamical analyses of payload twisting, control of payload twisting dynamics, simulated and experimental verification of overall system dynamics. The contribution of the project consists of three aspects. The first is the dynamics of the payload twisting. The second one is the coupling dynamical behavior among the payload twisting, payload swing, and vehicle vibrations. The third is a novel method for reducing vibrations in the transporting load-suspension systems. The research findings will promote the study of complicated mechanical dynamics, benefit the vibration reduction in flexible structures and cable structures, and suppress both the payload twisting and swing in transporting load-suspension systems. In addition, the experimental investigation and evaluation will also benefit the task performing capabilities to a broad range of manufacturing systems.
绳索吊挂重载装备空中运输有广泛应用。运载工具运动会诱导较大体积的重型负载同时产生摆动和扭转,严重威胁运载安全。不同于摆动,扭转动力学问题历史上较少进行研究。为提高重载吊挂系统工作性能和安全性,本项目主要开展四个方面的研究工作:(1)建立吊挂分布质量负载的工业吊车和飞行吊车数学模型,为动力学分析和系统设计提供理论基础。(2)对带有高维非线性和刚柔多耦合等特征的重载吊挂系统进行动力学分析,揭示出扭转现象产生的机理,发现扭转、摆动和运载工具之间多耦合动力学的物理规律。(3)提出非线性振动控制的新方法,可以同时抑制摆动和扭转,该方法对带有柔性结构和绳系结构的振动控制问题有普适性的参考价值。(4)通过仿真和实验手段对带有控制器的吊挂系统动力学行为和振动控制效果进行评估。本项目面向国家战略需求,为重载吊挂系统设计和安全运载构建完备的理论分析模型和方法,研究成果将为该类系统的设计提供重要的理论支撑。
绳索吊挂大体积负载同时存在摆动和扭转动力学行为。虽然扭转动力学行为在生产生活中很常见,但是前人没有对扭转动力学问题进行过研究。本项目对绳索吊挂系统的扭转动力学和振荡控制问题进行了研究。主要研究内容包括:第一,建立了绳索吊挂分布质量负载的动力学模型。该动力学模型包括了摆动和扭转耦合动力学。第二,对摆动和扭转耦合动力学行为进行了分析,归纳出了扭转频率的解析方程,进而揭示出扭转现象产生的机理,发现摆动和扭转耦合动力学的物理规律。第三,提出非线性振动控制的新方法,可以同时抑制摆动和扭转耦合振荡。该方法在多种类型的柔性系统的振动控制问题也有普适性的应用价值。本项目主要创新点体现在以下三点:发现了扭转频率的解析方程,揭示出扭转现象产生的机理,发明了新振动控制方法。本项目面向国家战略需求,为重载吊挂系统设计和安全运载构建完备的理论分析模型和方法,研究成果将为该类系统的设计提供重要的理论支撑。动力学方向的研究成果对刚柔耦合问题具有参考价值。振动控制方法对多种类型的柔性系统振动抑制问题具有普适性应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
旋翼无人机柔性吊挂动力学与控制方法研究
机械臂协调操作柔性负载系统动力学与控制研究
高速列车车体与车下吊挂设备多维动态耦合振动机理及控制研究
局域大空间高层结构抗震失效机理与扭转控制研究